triton like molecules
play

Triton-like molecules Li Ma 13/01/2020 Introduction and Motivation - PowerPoint PPT Presentation

Triton-like molecules Li Ma 13/01/2020 Introduction and Motivation 1 2 Tri-baryon systems , and 3 Application to the NNN system 4 Numerical results for the , and Some other numerical results 5


  1. Triton-like molecules Li Ma 13/01/2020

  2. Introduction and Motivation 1 2 Tri-baryon systems ΛΛΛ, ΞΞΞ and ΣΣΣ 3 Application to the NNN system 4 Numerical results for the ΛΛΛ, ΞΞΞ and ΣΣΣ Some other numerical results 5 Summary 6 13/01/2020 2 / 20

  3. Introduction and Motivation The deuteron-like molecules � � � � � � � � π � η � σ π � η � σ π � η � σ ρ � ω ρ � ω ρ � ω � � � � � � � � Deuteron Di-meson molecule Di-baryon molecule X (3872) → D ¯ Z b (10610) → B ¯ D ∗ , D s 1 (2460) → D ∗ K , B ∗ Z c (4020) → D ∗ ¯ Y (4260) → D 1 ¯ Z c (3900) → D ¯ D , D ∗ , D ∗ P c (4380) → Σ c ¯ c ¯ D ∗ , P c (4450) → Σ ∗ D ∗ 13/01/2020 3 / 20

  4. Introduction and Motivation The triton-like molecules � � � � � � � � � π � η � σ � ρ � ω � � � � � � � � � � Benzene ring Triton NDK , ¯ KDN , ND ¯ D , N ¯ KK , DKK , DK ¯ K , BBB ∗ , DDK , DD ∗ K , Ω NN and ΩΩ N Faddeev equation, or FCA Dimer or isobar formalism Gaussian expansion method (GEM) 13/01/2020 4 / 20

  5. Introduction and Motivation Efimov effect � 2 ma 2 (1 + O ( r 0 B 2 = a )) B 3 (1 + O ( r 0 a )) = 1 s 0 κ 2 − � 2 ma 2 + [ e − 2 π n f ( ξ )] ∗ m s 0 = 1 . 00624 ... , ξ is defined by tan ξ = − ( mB 3 ) 1 / 2 a / � , f ( ξ )is a universal function with f ( − π/ 2) = 1, � K = sgn ( E ) m | E | . Figure: Efimov plot 13/01/2020 5 / 20

  6. Tri-baryon systems ΛΛΛ, ΞΞΞ and ΣΣΣ Tri-baryon systems ΛΛΛ, ΞΞΞ and ΣΣΣ The OBE interaction indicates that there is only one virtual boson exchanged by any two constituents as shown in the following. � � � Ξ Λ Σ π π π Ξ Ξ Λ Λ Σ Σ � � � � � � � � � Figure: Dynamical illustration of the ΛΛΛ, ΞΞΞ and ΣΣΣ systems with a circle describing the delocalized π bond inside. Monopole form factor F ( q ) = Λ 2 − m 2 Λ 2 − q 2 , ( α = π, η, ρ, ω, σ, φ ) with q the α four-momentum of the pion and Λ the cutoff parameter. 13/01/2020 6 / 20

  7. Tri-baryon systems ΛΛΛ, ΞΞΞ and ΣΣΣ Born-Oppenheimer potential Considering that the particle b and c are static with the separation r bc , one can separate the degree of freedom of a from the three-body system. We assume the distance r bc is a parameter. The mesons b and c are static, and have one-pion interactions with meson a , which can be viewed as two static sources. We explore the dynamics for the meson a in the limit r bc → ∞ , and subtract the binding energy for the break-up state which is trivial for the three-body bound state. � � Ξ Ξ  ��  �� � � ��� π π  bc ) V BO ( r Ξ Ξ Ξ Ξ � �  �� �  �� � � � � � fixed fixed ( � ) ( � ) 13/01/2020 7 / 20 Figure: Illustration of the BO potential. (a) illustrates the calculation procedure

  8. Tri-baryon systems ΛΛΛ, ΞΞΞ and ΣΣΣ Interpolating wave function of meson a � Ξ  �� )  �� ) ψ ( � ψ ( � Ξ Ξ � �  �� � � fixed fixed The zero order of the final wave function for the meson a could be the superposition of these two components ψ ( � r ab ,� C [ ψ ( � r ab ) ± ψ ( � r ac ) = r ac )] | ΞΞΞ � Accordingly, one can obtain the energy eigenvalue of the meson a E a (Λ , � r bc ) = � ψ ( � r ab ,� r ac ) | H a | ψ ( � r ab ,� r ac ) � 13/01/2020 8 / 20

  9. Tri-baryon systems ΛΛΛ, ΞΞΞ and ΣΣΣ BO potential and Its physical meaning (Intensity of ”glue”) We define the BO potential as � Ξ V BO (Λ , � r bc ) = E a (Λ , � r bc ) − E 2 (Λ) . Ξ Ξ The BO potential can describe the contribution for the � � � one meson on the dynamics of the two remaining mesons. The meson a here works like a mass of ”glue”. V ( r )/ MeV 2 4 6 8 10 V tot V π ss - 1 40 V η ss V σ ss - 2 V ρ ss 20 V ω ss V ϕ ss - 3 r / fm 0.5 1.0 1.5 2.0 2.5 3.0 - 4 - 5 - 20 - 6 - 40 - 7 Figure: Here we chose the parameter Λ = 900 MeV. E ΞΞ I =0 = − 3 . 09 MeV. Ψ T = α Φ( � r bc ) ψ ( � r ab , � r ac ) . 13/01/2020 9 / 20

  10. Tri-baryon systems ΛΛΛ, ΞΞΞ and ΣΣΣ The configurations of the three-body systems Ξ � Ξ � � Ξ Ξ Ξ � � Ξ Ξ � � � Ξ Ξ � � � Figure: Every meson can be considered to be a lighter one and separated from the three-body system. Each of them can generate the ”glue” for the remaining mesons. � � � Ξ Ξ Ξ  ��  �� � �  ac )  ab ) V BO ( r V BO ( r  bc ) V BO ( r � � � � � � Ξ � � � Ξ Ξ Ξ Ξ Ξ  �� � ( � ) ( � ) ( � ) Figure: (a), (b) and (c) correspond to the wave functions ψ / a = Φ( � r bc ) ψ ( � r ab , � r ac ), ψ / b = Φ( � r ac ) ψ ( � r ab , � r bc ) and ψ / c = Φ( � r ab ) ψ ( � r bc , � r ac ), respectively. 13/01/2020 10 / 20 The basis constitute a configuration space { ψ , ψ , ψ } .

  11. Tri-baryon systems ΛΛΛ, ΞΞΞ and ΣΣΣ Interpolating wave functions The basis constitute a configuration space { ψ / a , ψ / b , ψ / c } . Ψ T = α Φ( � r bc ) ψ ( � r ab , � r ac ) + β Φ( � r ac ) ψ ( � r ab , � r bc ) + γ Φ( � r ab ) ψ ( � r bc , � r ac )   α  , = αψ / a + βψ / b + γψ / c = β  γ Expand Φ( � r bc ), Φ( � r ac ) and Φ( � r ab ) as a set of Laguerre polynomials � (2 λ ) 2 l +3 n ! Γ(2 l + 3 + n ) r l e − λ r L 2 l +2 χ nl ( r ) = (2 λ r ) , n = 1 , 2 , 3 ... n � � � ψ / a = φ i ( � r bc ) ψ ( � r ab , � r ac ) , ψ / b = φ i ( � r ac ) ψ ( � r ab , � r bc ) , ψ / c = φ i ( � r ab ) ψ ( � r bc , � r ac ) . i i i 13/01/2020 11 / 20

  12. Tri-baryon systems ΛΛΛ, ΞΞΞ and ΣΣΣ Orthonormalization We orthonormalize the { ψ / a , ψ / b , ψ / c } into a new � + ψ � � + ψ � � basis { ˜ a , ˜ b , ˜ ψ � ψ / ψ / ψ / c } . 1 ˜ � x ij ψ j ψ i ( ψ i a + ψ i b + ψ i � � = c ) − , a / / / / / a N i � i ψ � 1 ˜ �  ψ i ( ψ i a + ψ i b + ψ i x ij ψ j � � � ψ � = c ) − , � ψ � � ψ � / / / / b b / N i i   1 � � ψ � ψ � ψ i ˜ ( ψ i a + ψ i b + ψ i � x ij ψ j � � = c ) − , / c / / / c / N i i where the x ij is a parameter matrix which will be determined later. The N i are normalization coefficients. Then the eigenvector for the three-body system B ( ∗ ) a B ( ∗ ) b B ( ∗ ) can be written as a c vector in the configuration space { ˜ a , ˜ b , ˜ ψ / ψ / ψ / c } . Therefore, we have � α i ˜ � β j ˜ ˜ ψ j � γ k ˜ ψ i ψ k Ψ T = ˜ a + b + ˜ c , / / / i j k 13/01/2020 12 / 20

  13. Tri-baryon systems ΛΛΛ, ΞΞΞ and ΣΣΣ First order correction � Ξ  ( �  ( �  �� )  �� ) ψ * ψ * Ξ Ξ � �  �� � � fixed fixed The first order of the final wave function for the meson a could be the superposition of these two components ˜ C ∗ [ ˜ r ab ) ± ˜ ψ ∗ ( � r ab ,� ψ ∗ ( � ψ ∗ ( � r ac ) = r ac )] | ΞΞΞ � Accordingly, one can obtain the energy eigenvalue of the meson a � ˜ r ac ) | H a | ˜ E ∗ a (Λ , � r bc ) = ψ ( � r ab ,� ψ ( � r ab ,� r ac ) � We define the BO potential as V ∗ BO (Λ , � r bc ) = E ∗ a (Λ , � r bc ) − E 2 (Λ) . 13/01/2020 13 / 20

  14. Application to the NNN system Application to the NNN system (Triton or Helium-3 nucleus) � �� ���� � ��� � ��� [ ��� ] �� NNN = 5.38 MeV E I = 1 / 2 ���� � �� ���� � �� NNN = 1.71 MeV E I = 1 / 2 �� � � = � / � π � � � � � � � ���� � �� - � � � � � � �� �� [ ��� ] � � = � Figure: Dependence of the reduced three-body binding energy on the binding energy of its two-body subsystem (the deuteron). The result is comparable with the empirical binding energies of the triton (8.48 MeV) and helium-3 (7.80 MeV) nuclei. 13/01/2020 14 / 20

  15. Application to the NNN system Numerical results for the NNN system (Triton or Helium-3 nucleus) Λ(MeV) E 2 (MeV) E 3 (MeV) E T (MeV) V BO (0)(MeV) S wave(%) D wave(%) r rms (fm) 830.00 -0.18 -1.93 -2.11 -4.54 94.01 5.99 4.21 850.00 -0.67 -2.71 -3.38 -5.36 93.36 6.64 4.00 870.00 -1.23 -3.65 -4.88 -6.32 92.68 7.32 3.78 890.00 -1.88 -4.77 -6.66 -7.42 91.99 8.01 3.54 899.60 -2.23 -5.38 -7.62 -8.00 91.66 8.34 3.42 900.00 -2.25 -5.41 -7.66 -8.03 91.64 8.36 3.42 920.00 -3.05 -6.85 -9.90 -9.35 90.97 9.03 3.18 940.00 -3.98 -8.51 -12.49 -10.83 90.35 9.65 2.95 960.00 -5.03 -10.42 -15.45 -12.46 89.76 10.24 2.74 980.00 -6.21 -12.57 -18.78 -14.23 89.23 10.77 2.54 1000.00 -7.55 -14.97 -22.51 -16.14 88.73 11.27 2.37 1020.00 -9.04 -17.61 -26.65 -18.19 88.27 11.73 2.23 1040.00 -10.69 -20.51 -31.20 -20.37 87.84 12.16 2.10 Table: Bound state solutions for the NNN system with isospin I 3 = 1 / 2. E 2 is the energy eigenvalue of its subsystem. E 3 is the reduced three-body energy eigenvalue relative to the break-up state of the NNN system. E T is the total three-body energy eigenvalue relative to the NNN threshold. 13/01/2020 15 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend