transitive closure logic
play

Transitive Closure Logic Infinitary and Cyclic Proof Systems 1 - PowerPoint PPT Presentation

Transitive Closure Logic Infinitary and Cyclic Proof Systems 1 School of Computing, University of Kent, Canterbury, UK 2 Dept of Computer Science, Cornell University, Ithaca, NY, USA Reuben N. S. Rowe 1 Liron Cohen 2 PARIS Workshop @ FLoC, Sunday 8


  1. Transitive Closure Logic Infinitary and Cyclic Proof Systems 1 School of Computing, University of Kent, Canterbury, UK 2 Dept of Computer Science, Cornell University, Ithaca, NY, USA Reuben N. S. Rowe 1 Liron Cohen 2 PARIS Workshop @ FLoC, Sunday 8 th July 2018, Oxford, UK

  2. whose intended meaning is an infinite disjunction s x w 1 y w 1 x t y w 1 w 2 s x w 1 y w 1 x w 2 y w 2 x t y Transitive Closure ( TC ) Logic extends FOL with formulas: s x t y w 1 t s • s and t are terms 1 • ( RTC x , y φ )( s , t ) • φ is a formula • x and y are distinct variables (which become bound in φ )

  3. Transitive Closure ( TC ) Logic extends FOL with formulas: • s and t are terms 1 • ( RTC x , y φ )( s , t ) • φ is a formula • x and y are distinct variables (which become bound in φ ) whose intended meaning is an infinite disjunction s = t ∨ φ [ s / x , t / y ] ∨ ( ∃ w 1 . φ [ s / x , w 1 / y ] ∧ φ [ w 1 / x , t / y ]) ∨ ( ∃ w 1 , w 2 . φ [ s / x , w 1 / y ] ∧ φ [ w 1 / x , w 2 / y ] ∧ φ [ w 2 / x , t / y ]) ∨ . . .

  4. a i y The formal semantics: 1 v t v s a n 1 a n a 2 a 1 a 0 n for all i a i • M is a (standard) first-order model with domain D M v x a n v t a 0 D v s a n a 0 • v is a valuation of terms in M : 2 M , v | = ( RTC x , y φ )( s , t )

  5. a i y The formal semantics: v t v s a n a 2 a 1 a 0 n for all i 1 a i • M is a (standard) first-order model with domain D M v x a n v t a 0 v s • v is a valuation of terms in M : 2 M , v | = ( RTC x , y φ )( s , t ) ⇔ ∃ a 0 , . . . , a n ∈ D . . . a n − 1

  6. a i y The formal semantics: • M is a (standard) first-order model with domain D a n a 2 a 1 a 0 n for all i 1 a i M v x • v is a valuation of terms in M : 2 M , v | = ( RTC x , y φ )( s , t ) ⇔ ∃ a 0 , . . . , a n ∈ D . v ( s ) = a 0 ∧ v ( t ) = a n . . . v ( s ) v ( t ) a n − 1

  7. The formal semantics: a 0 a n a 2 • M is a (standard) first-order model with domain D a 1 2 • v is a valuation of terms in M : M , v | = ( RTC x , y φ )( s , t ) ⇔ ∃ a 0 , . . . , a n ∈ D . v ( s ) = a 0 ∧ v ( t ) = a n ∧ M , v [ x := a i , y := a i + 1 ] | = φ for all i < n ϕ ϕ ϕ ϕ v ( s ) v ( t ) a n − 1

  8. Why ‘Transitive Closure’ logic? ‘denotes’ the reflexive, transitive closure of M v x y v t v s s t RTC x y M v : RTC x y • Consider the binary relation induced by • b a y M v x a b M v x y (wrt. x and y ): 3

  9. Why ‘Transitive Closure’ logic? • RTC x y ‘denotes’ the reflexive, transitive closure of : M v RTC x y s t v s v t x y M v 3 • Consider the binary relation induced by φ (wrt. x and y ): � φ ( x , y ) � M , v = { ( a , b ) | M , v [ x := a , y := b ] | = φ }

  10. Why ‘Transitive Closure’ logic? 3 • Consider the binary relation induced by φ (wrt. x and y ): � φ ( x , y ) � M , v = { ( a , b ) | M , v [ x := a , y := b ] | = φ } • ( RTC x , y φ ) ‘denotes’ the reflexive, transitive closure of φ : = ( RTC x , y φ )( s , t ) ⇔ ( v ( s ) , v ( t )) ∈ ( � φ ( x , y ) � M , v ) ∗ M , v |

  11. Why Transitive Closure logic? • It has an intuitive, easy-to-understand semantics • It turns out to be surprisingly expressive Theorem (Avron ’03) All finitely inductively defined relations are definable in TC . 4 • It is a minimal extension of FOL

  12. Why Transitive Closure logic? • It has an intuitive, easy-to-understand semantics • It turns out to be surprisingly expressive Theorem (Avron ’03) A. Avron, Transitive Closure and the Mechanization of Mathematics , 2003. * as defined in: S. Feferman, Finitary Inductively Presented Logics , 1989 † with signatures containing a pairing function 4 • It is a minimal extension of FOL All finitely inductively defined relations * are definable in TC . †

  13. RTC v w n 1 n 2 v n 1 n 2 s n 1 s n 2 s n 1 0 s z 0 s z y s s 0 s s 0 v x s Example: Arithmetic s x Nat x s 0 y s 0 s y s s 0 s s y 0 s y y x x y s x 0 x s x natural numbers in TC : • The following axioms categorically characterise the z x 0 y w z ” y “ x 5 • Take a signature Σ = { 0 , s } + equality and pairing Nat ( x ) ≡ ( RTC v , w s v = w )( 0 , x )

  14. RTC v w n 1 n 2 v n 1 n 2 s n 1 s n 2 s z 0 s z y Example: Arithmetic x y s x s s 0 s s y s 0 s y 0 y s s 0 s 0 0 x Nat x y x s y 0 w “ x y z ” 5 0 y z x • The following axioms categorically characterise the natural numbers in TC : x s x • Take a signature Σ = { 0 , s } + equality and pairing Nat ( x ) ≡ ( RTC v , w s v = w )( 0 , x ) s · = · s · = · s · = · s · = · s n - 1 0 v ( x )

  15. s n 1 0 s z 0 s z y Example: Arithmetic s 0 s s 0 s s y s 0 s y 0 y s s s s v x s s 0 0 x Nat x y x s y x y s x 0 x s x natural numbers in TC : • The following axioms categorically characterise the 5 • Take a signature Σ = { 0 , s } + equality and pairing Nat ( x ) ≡ ( RTC v , w s v = w )( 0 , x ) “ x = y + z ” ≡ ( RTC v , w ∃ n 1 , n 2 . v = ⟨ n 1 , n 2 ⟩ ∧ w = ⟨ s n 1 , s n 2 ⟩ )( ⟨ 0 , y ⟩ , ⟨ z , x ⟩ )

  16. s n 1 0 s z 0 s z y Example: Arithmetic s 0 s s 0 s s y s 0 s y s s s s v x s s 0 0 x Nat x y x s y x y s x 0 x s x natural numbers in TC : • The following axioms categorically characterise the 5 • Take a signature Σ = { 0 , s } + equality and pairing Nat ( x ) ≡ ( RTC v , w s v = w )( 0 , x ) “ x = y + z ” ≡ ( RTC v , w ∃ n 1 , n 2 . v = ⟨ n 1 , n 2 ⟩ ∧ w = ⟨ s n 1 , s n 2 ⟩ )( ⟨ 0 , y ⟩ , ⟨ z , x ⟩ ) ⟨ 0 , y ⟩

  17. s n 1 0 s z 0 s z y Example: Arithmetic x Nat x s s 0 s s y s s s s v x s s 0 s 0 0 y x s y x y s x 0 x s x natural numbers in TC : • The following axioms categorically characterise the 5 • Take a signature Σ = { 0 , s } + equality and pairing Nat ( x ) ≡ ( RTC v , w s v = w )( 0 , x ) “ x = y + z ” ≡ ( RTC v , w ∃ n 1 , n 2 . v = ⟨ n 1 , n 2 ⟩ ∧ w = ⟨ s n 1 , s n 2 ⟩ )( ⟨ 0 , y ⟩ , ⟨ z , x ⟩ ) ⟨ 0 , y ⟩ ⟨ s 0 , s y ⟩

  18. s n 1 0 s z 0 s z y Example: Arithmetic x Nat x s s s s v x s s 0 s 0 0 y x s y x y s x 0 x s x natural numbers in TC : • The following axioms categorically characterise the 5 • Take a signature Σ = { 0 , s } + equality and pairing Nat ( x ) ≡ ( RTC v , w s v = w )( 0 , x ) “ x = y + z ” ≡ ( RTC v , w ∃ n 1 , n 2 . v = ⟨ n 1 , n 2 ⟩ ∧ w = ⟨ s n 1 , s n 2 ⟩ )( ⟨ 0 , y ⟩ , ⟨ z , x ⟩ ) ⟨ 0 , y ⟩ ⟨ s 0 , s y ⟩ ⟨ s s 0 , s s y ⟩

  19. s n 1 0 Example: Arithmetic y s s s s v x s s 0 s 0 x Nat x 0 x s y x y s x 0 x s x natural numbers in TC : • The following axioms categorically characterise the 5 • Take a signature Σ = { 0 , s } + equality and pairing Nat ( x ) ≡ ( RTC v , w s v = w )( 0 , x ) “ x = y + z ” ≡ ( RTC v , w ∃ n 1 , n 2 . v = ⟨ n 1 , n 2 ⟩ ∧ w = ⟨ s n 1 , s n 2 ⟩ )( ⟨ 0 , y ⟩ , ⟨ z , x ⟩ ) ⟨ 0 , y ⟩ ⟨ s 0 , s y ⟩ ⟨ s s 0 , s s y ⟩ ⟨ s z 0 , s z y ⟩

  20. s n 1 0 s z 0 s z y Example: Arithmetic s s 0 s s y s 0 s y 0 y s s s s v x s s 0 s 0 0 natural numbers in TC : • The following axioms categorically characterise the 5 • Take a signature Σ = { 0 , s } + equality and pairing Nat ( x ) ≡ ( RTC v , w s v = w )( 0 , x ) “ x = y + z ” ≡ ( RTC v , w ∃ n 1 , n 2 . v = ⟨ n 1 , n 2 ⟩ ∧ w = ⟨ s n 1 , s n 2 ⟩ )( ⟨ 0 , y ⟩ , ⟨ z , x ⟩ ) ∀ x . s x ̸ = 0 ∀ x , y . s ( x ) = s ( y ) → x = y ∀ x . Nat ( x )

  21. Applications e.g. SQL3, IBM DB2, Datalog J. Halpern Et Al, On the Unusual Effectiveness of Logic in Computer Science , 2001 defined inductively Common knowledge, Reachability properties of type judgments Inductive definition complexity classes Characterization of (WITH RECURSIVE) Expressive query languages, of Logic in CS data in programs Loops/inductive Databases Verification Complexity Type Theory Checking Model Reasoning Knowledge 6

  22. Applications e.g. SQL3, IBM DB2, Datalog J. Halpern Et Al, On the Unusual Effectiveness of Logic in Computer Science , 2001 defined inductively Common knowledge, Reachability properties of type judgments Inductive definition complexity classes Characterization of (WITH RECURSIVE) Expressive query languages, of Logic in CS data in programs Loops/inductive Databases Verification Complexity Type Theory Checking Model Reasoning Knowledge 6

  23. FOL SOL TC Weak SOL -logic Cardinality logic FOL + Henkin Quantifiers FOM FOL + ML Ind. Defs “Everything should be made as simple as possible but not simpler” —Albert Einsten 7

  24. FOL SOL TC Weak SOL -logic Cardinality logic FOL + Henkin Quantifiers FOM FOL + ML Ind. Defs “Everything should be made as simple as possible but not simpler” —Albert Einsten 7

  25. FOL SOL TC Weak SOL Cardinality logic FOL + Henkin Quantifiers FOM FOL + ML Ind. Defs “Everything should be made as simple as possible but not simpler” —Albert Einsten 7 ω -logic

  26. FOL SOL TC Weak SOL Cardinality logic FOL + Henkin Quantifiers FOL + ML Ind. Defs “Everything should be made as simple as possible but not simpler” —Albert Einsten 7 ω -logic FOM µ

  27. where, for binary relations R and S , we define The transitive closure 8 R + = ∪ R i , where R 0 = R i ≥ 0 R i + 1 = R i ◦ R ( i ≥ 0 ) is a particular kind of fixed point: R + = µ X . Ψ R ( X ) Ψ R ( S ) = R ∪ ( R ◦ S )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend