uniform inductive reasoning in transitive closure logic
play

Uniform Inductive Reasoning in Transitive Closure Logic via Infinite - PowerPoint PPT Presentation

Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent SREPLS 10, Birkbeck, University of London 1 Dept of Computer Science, Cornell University, Ithaca, NY, USA 2 School of Computing, University of Kent, Canterbury, UK Liron


  1. Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent SREPLS 10, Birkbeck, University of London 1 Dept of Computer Science, Cornell University, Ithaca, NY, USA 2 School of Computing, University of Kent, Canterbury, UK Liron Cohen 1 Reuben N. S. Rowe 2 Tuesday 18 th September 2018

  2. Motivation • Carry out formal inductive reasoning • Do so automatically (as much as possible) • Study/compare different ‘styles’ of inductive reasoning 1

  3. Formalising Inductive Reasoning

  4. Explicit Inductive Definitions • We take the smallest interpretation closed under the rules O s x E x E s x O x E 0 N s x N x • Use clauses to inductively define predicates: N 0 . . . 2 ⃗ ϕ 1 ∧ . . . ∧ ϕ n ⇒ P ( t ) ⃗ ψ 1 ∧ . . . ∧ ψ m ⇒ P ( t ) � N � = { 0 , s0 , ss0 , . . . , s n 0 , . . . } � E � = { 0 , ss0 , . . . , s 2 n 0 , . . . } � O � = { s0 , . . . , s 2 n + 1 0 , . . . }

  5. Reasoning Using Explicit Induction Principles • We reason using the corresponding induction principles • E.g. the productions for N give 3 ⃗ Γ ⊢ IND Q ( F ) ( ∀ Q mutually recursive with P ) Γ , F ( t ) ⊢ ∆ Γ , P ⃗ t ⊢ ∆ Γ ⊢ F ( 0 ) Γ , F ( x ) ⊢ F ( s x ) Γ , F ( t ) ⊢ ∆ Γ , N t ⊢ ∆

  6. • At certain points, these progress (i.e. get ‘smaller’) • Each infinite path must admit some infinite descent Non-well-founded Proofs: Reasoning by Infinite Descent P t • i.e. decidable using Büchi automata -regular property • This global trace condition is an • We trace predicate instances through the proof Q u (Axiom) (Axiom) (Axiom) . (Inference) 4 . . . . . . . . . . . . • • • • . . . . . . . . • • • · · · •

  7. • At certain points, these progress (i.e. get ‘smaller’) Non-well-founded Proofs: Reasoning by Infinite Descent . • i.e. decidable using Büchi automata -regular property • This global trace condition is an • Each infinite path must admit some infinite descent • We trace predicate instances through the proof (Axiom) (Axiom) (Axiom) . . (Inference) . . . . . . . . . 4 . ∞ • • . . . . . . . . ∞ • • • · · · •

  8. Non-well-founded Proofs: Reasoning by Infinite Descent . • i.e. decidable using Büchi automata -regular property • This global trace condition is an • Each infinite path must admit some infinite descent • At certain points, these progress (i.e. get ‘smaller’) • We trace predicate instances through the proof (Axiom) (Axiom) (Axiom) . (Inference) . 4 . . . . . . . . . . ∞ s ) . . . . . . . . ∞ • • Q ( ⃗ R ( ⃗ u ) P ( ⃗ r ) · · · ⃗ P ( t )

  9. • Each infinite path must admit some infinite descent Non-well-founded Proofs: Reasoning by Infinite Descent . • i.e. decidable using Büchi automata -regular property • This global trace condition is an • We trace predicate instances through the proof (Axiom) (Axiom) (Axiom) . (Inference) . 4 . . . . . . . . . . ∞ s ) . . . . . . . . ∞ • • Q ( ⃗ R ( ⃗ u ) P ( ⃗ r ) · · · ⃗ P ( t ) • At certain points, these progress (i.e. get ‘smaller’)

  10. Non-well-founded Proofs: Reasoning by Infinite Descent . • i.e. decidable using Büchi automata -regular property • This global trace condition is an • Each infinite path must admit some infinite descent • We trace predicate instances through the proof (Axiom) (Axiom) (Axiom) . (Inference) . 4 . . . . . . . . . . ∞ s ) . . . . . . . . ∞ • • Q ( ⃗ R ( ⃗ u ) P ( ⃗ r ) · · · ⃗ P ( t ) • At certain points, these progress (i.e. get ‘smaller’)

  11. Non-well-founded Proofs: Reasoning by Infinite Descent . • i.e. decidable using Büchi automata • Each infinite path must admit some infinite descent • We trace predicate instances through the proof (Axiom) (Axiom) (Axiom) . . . . (Inference) . . . . . . . 4 . Q ( ⃗ u ) ⃗ s ) . . . . . . . . P ( t ) • • Q ( ⃗ R ( ⃗ u ) P ( ⃗ r ) · · · ⃗ P ( t ) • At certain points, these progress (i.e. get ‘smaller’) • This global trace condition is an ω -regular property

  12. An Example Cyclic Proof (Subst) (Case E) (N R 2 ) (Case O) (N R 2 ) (N R 1 ) 5 E x ⊢ N x E z ⊢ N z E z ⊢ N s z ⇒ N 0 ( = L) y = s z , E z ⊢ N y N x ⇒ N s x ⇒ E 0 O y ⊢ N y O x ⇒ E s x ⊢ N 0 O y ⊢ N s y E x ⇒ O s x ( = L) ( = L) x = 0 ⊢ N x x = s y , O y ⊢ N x E x ⊢ N x

  13. An Example Cyclic Proof (Subst) Left unfolding rule (Case E) (N R 2 ) (Case O) (N R 2 ) 5 (N R 1 ) E x ⊢ N x E z ⊢ N z E z ⊢ N s z ⇒ N 0 ( = L) y = s z , E z ⊢ N y N x ⇒ N s x ⇒ E 0 O y ⊢ N y O x ⇒ E s x ⊢ N 0 O y ⊢ N s y E x ⇒ O s x ( = L) ( = L) x = 0 ⊢ N x x = s y , O y ⊢ N x E x ⊢ N x

  14. An Example Cyclic Proof (Subst) Left unfolding rule (Case E) (N R 2 ) (Case O) (N R 2 ) 5 (N R 1 ) E x ⊢ N x E z ⊢ N z E z ⊢ N s z ⇒ N 0 ( = L) y = s z , E z ⊢ N y N x ⇒ N s x ⇒ E 0 O y ⊢ N y O x ⇒ E s x ⊢ N 0 O y ⊢ N s y E x ⇒ O s x ( = L) ( = L) x = 0 ⊢ N x x = s y , O y ⊢ N x E x ⊢ N x

  15. An Example Cyclic Proof (Subst) Right unfolding rule (Case E) (N R 2 ) (Case O) (N R 2 ) 5 (N R 1 ) E x ⊢ N x E z ⊢ N z E z ⊢ N s z ⇒ N 0 ( = L) y = s z , E z ⊢ N y N x ⇒ N s x ⇒ E 0 O y ⊢ N y O x ⇒ E s x ⊢ N 0 O y ⊢ N s y E x ⇒ O s x ( = L) ( = L) x = 0 ⊢ N x x = s y , O y ⊢ N x E x ⊢ N x

  16. An Example Cyclic Proof (Subst) Right unfolding rule (Case E) (N R 2 ) (Case O) (N R 2 ) 5 (N R 1 ) E x ⊢ N x E z ⊢ N z E z ⊢ N s z ⇒ N 0 ( = L) y = s z , E z ⊢ N y N x ⇒ N s x ⇒ E 0 O y ⊢ N y O x ⇒ E s x ⊢ N 0 O y ⊢ N s y E x ⇒ O s x ( = L) ( = L) x = 0 ⊢ N x x = s y , O y ⊢ N x E x ⊢ N x

  17. An Example Cyclic Proof (Subst) Right unfolding rule (Case E) (N R 2 ) (Case O) (N R 2 ) 5 (N R 1 ) E x ⊢ N x E z ⊢ N z E z ⊢ N s z ⇒ N 0 ( = L) y = s z , E z ⊢ N y N x ⇒ N s x ⇒ E 0 O y ⊢ N y O x ⇒ E s x ⊢ N 0 O y ⊢ N s y E x ⇒ O s x ( = L) ( = L) x = 0 ⊢ N x x = s y , O y ⊢ N x E x ⊢ N x

  18. An Example Cyclic Proof (Subst) (Case E) (N R 2 ) (Case O) (N R 2 ) (N R 1 ) 5 E x ⊢ N x E z ⊢ N z E z ⊢ N s z ⇒ N 0 ( = L) y = s z , E z ⊢ N y N x ⇒ N s x ⇒ E 0 O y ⊢ N y O x ⇒ E s x ⊢ N 0 O y ⊢ N s y E x ⇒ O s x ( = L) ( = L) x = 0 ⊢ N x x = s y , O y ⊢ N x E x ⊢ N x

  19. Comparing the Two Approaches For FOL with Martin-Löf style inductive definitions: [Brotherston & Simpson, 2007] • Infinitary system sound/complete for standard semantics • Cyclic system subsumes explicit induction • Equivalent under arithmetic • Not equivalent in general (2-Hydra counterexample) [Berardi & Tatsuta, 2017] • Explicit induction sound/complete for Henkin semantics 6

  20. Comparing the Two Approaches For FOL with Martin-Löf style inductive definitions: [Brotherston & Simpson, 2007] • Infinitary system sound/complete for standard semantics • Cyclic system subsumes explicit induction • Equivalent under arithmetic • Not equivalent in general (2-Hydra counterexample) [Berardi & Tatsuta, 2017] • Explicit induction sound/complete for Henkin semantics 6

  21. Comparing the Two Approaches For FOL with Martin-Löf style inductive definitions: [Brotherston & Simpson, 2007] • Infinitary system sound/complete for standard semantics • Cyclic system subsumes explicit induction • Equivalent under arithmetic • Not equivalent in general (2-Hydra counterexample) [Berardi & Tatsuta, 2017] • Explicit induction sound/complete for Henkin semantics 6

  22. Transitive Closure Logic

  23. Transitive Closure Logic Transitive Closure ( TC ) Logic extends FOL with formulas: • s and t are terms 7 • ( RTC x , y ϕ )( s , t ) • ϕ is a formula • x and y are distinct variables (which become bound in ϕ ) whose intended meaning is an infinite disjunction s = t ∨ ϕ [ s / x , t / y ] ∨ ( ∃ w 1 . ϕ [ s / x , w 1 / y ] ∧ ϕ [ w 1 / x , t / y ]) ∨ ( ∃ w 1 , w 2 . ϕ [ s / x , w 1 / y ] ∧ ϕ [ w 1 / x , w 2 / y ] ∧ ϕ [ w 2 / x , t / y ]) ∨ . . .

  24. a i y a i v t v s a n 1 a n a 2 a 1 a 0 n for all i 1 Transitive Closure Logic: Standard Semantics The formal semantics: M v x a n v t a 0 D v s a n a 0 • v is a valuation of terms in M : • M is a (standard) first-order model with domain D 8 M , v | = ( RTC x , y ϕ )( s , t )

  25. a i y Transitive Closure Logic: Standard Semantics v t v s a n a 2 a 1 a 0 n for all i 1 The formal semantics: a i M v x a n v t a 0 v s • v is a valuation of terms in M : • M is a (standard) first-order model with domain D 8 M , v | = ( RTC x , y ϕ )( s , t ) ⇔ ∃ a 0 , . . . , a n ∈ D . . . a n − 1

  26. a i y Transitive Closure Logic: Standard Semantics 1 a n a 2 a 1 a 0 n The formal semantics: for all i a i M v x • v is a valuation of terms in M : • M is a (standard) first-order model with domain D 8 M , v | = ( RTC x , y ϕ )( s , t ) ⇔ ∃ a 0 , . . . , a n ∈ D . v ( s ) = a 0 ∧ v ( t ) = a n . . . v ( s ) v ( t ) a n − 1

  27. Transitive Closure Logic: Standard Semantics a 0 a n a 2 The formal semantics: a 1 • M is a (standard) first-order model with domain D • v is a valuation of terms in M : 8 M , v | = ( RTC x , y ϕ )( s , t ) ⇔ ∃ a 0 , . . . , a n ∈ D . v ( s ) = a 0 ∧ v ( t ) = a n ∧ M , v [ x := a i , y := a i + 1 ] | = ϕ for all i < n φ φ φ φ v ( s ) v ( t ) a n − 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend