uniform inductive reasoning in transitive closure logic
play

Uniform Inductive Reasoning in Transitive Closure Logic via Infinite - PowerPoint PPT Presentation

Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent Computer Science Logic 1 Dept of Computer Science, Cornell University, Ithaca, NY, USA 2 School of Computing, University of Kent, Canterbury, UK Liron Cohen 1 Reuben N.


  1. Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent Computer Science Logic 1 Dept of Computer Science, Cornell University, Ithaca, NY, USA 2 School of Computing, University of Kent, Canterbury, UK Liron Cohen 1 Reuben N. S. Rowe 2 Wednesday 5 th September 2018, Birmingham, UK

  2. • This global trace condition is an Non-well-founded Proofs: Syntactic Principles 6 • i.e. decidable using Büchi automata -regular property • Each infinite path must admit some infinite descent • At certain points, there is a notion of ‘progression’ through judgements • We trace syntactic elements 5 (Axiom) (Axiom) (Axiom) . (Inference) 1 . . . . . . . . . . . . • • • • . . . . . . . . • • • · · · •

  3. Non-well-founded Proofs: Syntactic Principles . • i.e. decidable using Büchi automata -regular property • This global trace condition is an • Each infinite path must admit some infinite descent • At certain points, there is a notion of ‘progression’ through judgements • We trace syntactic elements (Axiom) (Axiom) (Axiom) . (Inference) 1 . . . . . . . . . . . ∞ • • . . . . . . . . ∞ • • • · · · •

  4. • This global trace condition is an Non-well-founded Proofs: Syntactic Principles . • i.e. decidable using Büchi automata -regular property • Each infinite path must admit some infinite descent • At certain points, there is a notion of ‘progression’ (Axiom) (Axiom) (Axiom) . . (Inference) . . . . . . . . . 1 . ∞ • • . . . . . . . . ∞ • τ 3 τ 2 · · · τ 1 • We trace syntactic elements τ through judgements

  5. • This global trace condition is an Non-well-founded Proofs: Syntactic Principles . • i.e. decidable using Büchi automata -regular property • Each infinite path must admit some infinite descent • At certain points, there is a notion of ‘progression’ (Axiom) (Axiom) (Axiom) . . (Inference) . . . . . . . . . 1 . ∞ • • . . . . . . . . ∞ • τ 3 τ 2 · · · τ 1 • We trace syntactic elements τ through judgements

  6. Non-well-founded Proofs: Syntactic Principles . • i.e. decidable using Büchi automata -regular property • This global trace condition is an • Each infinite path must admit some infinite descent • At certain points, there is a notion of ‘progression’ (Axiom) (Axiom) (Axiom) . . (Inference) . . . . . . . . . 1 . ∞ • • . . . . . . . . ∞ • τ 3 τ 2 · · · τ 1 • We trace syntactic elements τ through judgements

  7. Non-well-founded Proofs: Syntactic Principles . • i.e. decidable using Büchi automata • Each infinite path must admit some infinite descent • At certain points, there is a notion of ‘progression’ (Axiom) (Axiom) (Axiom) . . . (Inference) . . . . . . . . . 1 τ 5 • τ 4 . . . . . . . . τ 6 τ 3 • τ 2 · · · τ 1 • We trace syntactic elements τ through judgements • This global trace condition is an ω -regular property

  8. counter-models M 1 M 2 M 3 M 1 J 1 M 2 J 2 M 3 J 3 3 for progression points M 2 J 2 M 3 J 3 Non-well-founded Proofs: Soundness via Infinite Descent • Assume for contradiction that the conclusion is invalid • Local soundness • We demonstrate a mapping into well-founded D s.t. • 2 1 . 3 • 2 • Global trace condition infinitely descending chain in D ! (Axiom) M 1 2 . . . . . . . . M 3 . . . . (Inference) M 2 ∞ • . . . . . . . . ∞ • • J 3 [ τ 3 ] J 2 [ τ 2 ] · · · J 1 [ τ 1 ]

  9. counter-models M 1 M 2 M 3 M 1 J 1 M 2 J 2 M 3 J 3 3 for progression points M 2 J 2 M 3 J 3 Non-well-founded Proofs: Soundness via Infinite Descent • Assume for contradiction that the conclusion is invalid • Local soundness • We demonstrate a mapping into well-founded D s.t. • 2 1 . 3 • 2 • Global trace condition infinitely descending chain in D ! (Axiom) 2 . . . . . . . M 3 . . . . (Inference) M 2 . ∞ • . . . . . . . . ∞ • • J 3 [ τ 3 ] J 2 [ τ 2 ] · · · M 1 ⊭ J 1 [ τ 1 ]

  10. M 1 J 1 M 2 J 2 M 3 J 3 3 for progression points M 2 J 2 M 3 J 3 • Assume for contradiction that the conclusion is invalid • We demonstrate a mapping into well-founded D s.t. • 1 Non-well-founded Proofs: Soundness via Infinite Descent 2 . 3 • 2 • Global trace condition infinitely descending chain in D ! (Axiom) 2 . . . . . . . . . . (Inference) . . ∞ • . . . . . . . . ∞ • • M 3 ⊭ J 3 [ τ 3 ] M 2 ⊭ J 2 [ τ 2 ] · · · M 1 ⊭ J 1 [ τ 1 ] • Local soundness ⇒ counter-models M 1 , M 2 , M 3 , . . .

  11. 3 for progression points M 2 J 2 M 3 J 3 Non-well-founded Proofs: Soundness via Infinite Descent . infinitely descending chain in D ! • Global trace condition 2 • • Assume for contradiction that the conclusion is invalid (Axiom) . (Inference) 2 . . . . . . . . . . . ∞ • . . . . . . . . ∞ • • M 3 ⊭ J 3 [ τ 3 ] M 2 ⊭ J 2 [ τ 2 ] · · · M 1 ⊭ J 1 [ τ 1 ] • Local soundness ⇒ counter-models M 1 , M 2 , M 3 , . . . • We demonstrate a mapping into well-founded ( D , < ) s.t. • � M 1 � J 1 [ τ 1 ] ≤ � M 2 � J 2 [ τ 2 ] ≤ � M 3 � J 3 [ τ 3 ] ≤ . . .

  12. Non-well-founded Proofs: Soundness via Infinite Descent . infinitely descending chain in D ! • Global trace condition • Assume for contradiction that the conclusion is invalid (Axiom) . . . . (Inference) . . . . . 2 . . . ∞ • . . . . . . . . ∞ • • M 3 ⊭ J 3 [ τ 3 ] M 2 ⊭ J 2 [ τ 2 ] · · · M 1 ⊭ J 1 [ τ 1 ] • Local soundness ⇒ counter-models M 1 , M 2 , M 3 , . . . • We demonstrate a mapping into well-founded ( D , < ) s.t. • � M 1 � J 1 [ τ 1 ] ≤ � M 2 � J 2 [ τ 2 ] ≤ � M 3 � J 3 [ τ 3 ] ≤ . . . • � M 2 � J 2 [ τ 2 ] < � M 3 � J 3 [ τ 3 ] for progression points

  13. Non-well-founded Proofs: Soundness via Infinite Descent . • Assume for contradiction that the conclusion is invalid (Axiom) (Inference) . . . . . 2 . . . . . . . ∞ • . . . . . . . . ∞ • • M 3 ⊭ J 3 [ τ 3 ] M 2 ⊭ J 2 [ τ 2 ] · · · M 1 ⊭ J 1 [ τ 1 ] • Local soundness ⇒ counter-models M 1 , M 2 , M 3 , . . . • We demonstrate a mapping into well-founded ( D , < ) s.t. • � M 1 � J 1 [ τ 1 ] ≤ � M 2 � J 2 [ τ 2 ] ≤ � M 3 � J 3 [ τ 3 ] ≤ . . . • � M 2 � J 2 [ τ 2 ] < � M 3 � J 3 [ τ 3 ] for progression points • Global trace condition ⇒ infinitely descending chain in D !

  14. Why Study Non-well-founded Proof Theory? Non-well-founded/cyclic proof theory allows to: • Obtain (cut-free) completeness results Kleene Algebra: Das&Pous • Effectively search for proofs of inductive properties • Automatically verify properties of programs [Brotherston, Bornat, Calcagno, Gorogiannis, Peterson, R, Tellez] • Formally study explicit induction vs infinite descent Ind. Defs: Brotherston&Simpson, Berardi&Tatsuta Arithmetic: Simpson, Das 3 µ -calculus: Fortier&Santocanale, Afshari&Leigh, Doumane Et Al. µ -calculus: Santocanale, Sprenger&Dam, Baelde Et Al., Nollet Et Al.

  15. Example: Martin-Löf-style Inductive Predicates in FOL N 0 O s x E x E s x O x E 0 • We give productions for each ‘inductive’ predicate P i N x N s x • We take the smallest interpretation closed under the rules 4 Q 1 ( ⃗ Q n ( ⃗ s 1 ) . . . s n ) ⃗ P i ( t ) � N � = { 0 , s0 , ss0 , . . . , s n 0 , . . . } � E � = { 0 , ss0 , . . . , s 2 n 0 , . . . } = { s0 , . . . , s 2 n + 1 0 , . . . } � O �

  16. s n 0 s 2 n 0 1 0 Example: Martin-Löf-style Inductive Predicates in FOL E 0 s 2 n s0 0 ss0 0 s0 ss0 O s x E x • We give productions for each ‘inductive’ predicate P i O x E s x N s x N x 4 N 0 • We take the smallest interpretation closed under the rules Q 1 ( ⃗ Q n ( ⃗ s 1 ) . . . s n ) ⃗ P i ( t ) � N � 0 = { } � E � 0 = { } � O � 0 = { }

  17. s n 0 s 2 n 0 1 0 Example: Martin-Löf-style Inductive Predicates in FOL E 0 s 2 n s0 ss0 s0 ss0 O s x E x • We give productions for each ‘inductive’ predicate P i O x E s x N s x N x 4 N 0 • We take the smallest interpretation closed under the rules Q 1 ( ⃗ Q n ( ⃗ s 1 ) . . . s n ) ⃗ P i ( t ) � N � 1 = { 0 , } � E � 1 = { 0 , } � O � 1 = { }

  18. s n 0 s 2 n 0 1 0 Example: Martin-Löf-style Inductive Predicates in FOL E 0 s 2 n ss0 ss0 O s x E x • We give productions for each ‘inductive’ predicate P i O x E s x N s x N x 4 N 0 • We take the smallest interpretation closed under the rules Q 1 ( ⃗ Q n ( ⃗ s 1 ) . . . s n ) ⃗ P i ( t ) � N � 2 = { 0 , s0 , } � E � 2 = { 0 , } � O � 2 = { s0 , }

  19. s n 0 s 2 n 0 1 0 Example: Martin-Löf-style Inductive Predicates in FOL N s x s 2 n O s x E x E s x • We give productions for each ‘inductive’ predicate P i E 0 O x N x N 0 4 • We take the smallest interpretation closed under the rules Q 1 ( ⃗ Q n ( ⃗ s 1 ) . . . s n ) ⃗ P i ( t ) � N � 3 = { 0 , s0 , ss0 , } � E � 3 = { 0 , ss0 , } � O � 3 = { s0 , }

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend