closure properties and closure properties of
play

Closure, Properties and Closure Properties of Multirelations Rudolf - PowerPoint PPT Presentation

Closure, Properties and Closure Properties of Multirelations Rudolf Berghammer Walter Guttmann Christian-Albrechts-Universit at zu Kiel University of Canterbury 1. Multirelations 2. Reflexive - Transitive Closure 3. Properties and their


  1. Closure, Properties and Closure Properties of Multirelations Rudolf Berghammer Walter Guttmann Christian-Albrechts-Universit¨ at zu Kiel University of Canterbury 1. Multirelations 2. Reflexive - Transitive Closure 3. Properties and their Closure 4. Topological Contact

  2. Context and Method • multirelations in program semantics, games, topological contact • systematically investigate their properties • express multirelational operations using relations • study properties of operations • abstract properties to weak algebras • derive theory in these algebras Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 2

  3. Relations and Multirelations • state space A = { 1 , 2 , 3 } • relation ⊆ A × A multirelation ⊆ A × 2 A 123 23 13 12 1 2 3 ∅ 3 2 1 1 1 2 2 3 3 • Boolean algebra with ∪ , ∩ , • composition • converse · c , dual · d Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 3

  4. Multirelational Constants 123 123 23 13 12 23 13 12 ∅ 3 2 1 ∅ 3 2 1 O = T = 1 1 2 2 3 3 123 123 23 13 12 23 13 12 ∅ 3 2 1 ∅ 3 2 1 E = U = 1 1 2 2 3 3 Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 4

  5. Relational Composition 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 2 3 3 ( QR ) x , z ⇔ ∃ y ∈ A : Q x , y ∧ R y , z Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 5

  6. Multirelational Composition 123 23 13 12 ∅ 3 2 1 1 2 3 123 123 23 13 12 23 13 12 ∅ 3 2 1 ∅ 3 2 1 1 1 2 2 3 3 ( Q ; R ) x , Z ⇔ ∃ Y ∈ 2 A : Q x , Y ∧ ∀ y ∈ Y : R y , Z Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 6

  7. Up-closed Multirelations 123 23 13 12 ∅ 3 2 1 not up-closed 1 2 3 123 23 13 12 ∅ 3 2 1 up-closed 1 2 3 ∀ x ∈ A : ∀ Y , Z ∈ 2 A : R x , Y ∧ Y ⊆ Z ⇒ R x , Z Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 7

  8. Relational Operations for Multirelations Q c R right residual Q \ R = ( Q \ R ) ∩ ( R \ Q ) c symmetric quotient Q ÷ R = subset relation : 2 A ↔ 2 A S = E \ E multirelational composition Q ; R = Q (E \ R ) R up-closed if = R S R Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 8

  9. Unit and Zero of Multirelations left unit E; R = E(E \ R ) = R right unit R ;E = R (E \ E) = R S = R if R up-closed left zero O; R = O T; R = T Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 9

  10. Laws of Multirelations all multirelations up-closed multirelations O; R = O E; R = R T; R = T R ;E ⊇ R R ;E = R Q ⊆ R ⇒ P ; Q ⊆ P ; R ( P ∪ Q ); R = P ; R ∪ Q ; R ( P ∩ Q ); R ⊆ P ; R ∩ Q ; R ( P ∩ Q ); R = P ; R ∩ Q ; R ( P ; Q ); R ⊆ P ;( Q ; R ) ( P ; Q ); R = P ;( Q ; R ) Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 10

  11. Algebraic Structures bounded join-semilattice x + ( y + z ) = ( x + y ) + z x + x = x x + y = y + x 0 + x = x pre-left semiring ( x · y ) + ( x · z ) ≤ x · ( y + z ) ( x · y ) · z ≤ x · ( y · z ) ( x · z ) + ( y · z ) = ( x + y ) · z x ≤ x · 1 0 = 0 · x x = 1 · x left residual x · y ≤ z ⇔ x ≤ z / y Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 11

  12. Reflexive-Transitive Closure recursion modelled by f ( x ) = 1 + x · y g ( x ) = 1 + y · x h ( x ) = 1 + y + x · x least prefixpoint f ( µ f ) ≤ µ f f ( x ) ≤ x ⇒ µ f ≤ x if µ f , µ g , µ h exist then µ f ≤ µ g = µ h Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 12

  13. Properties of Multirelations up-closed R ;E = R total R ;T = T co-total R ;O = O ∪ -distributive R ;( P ∪ Q ) = R ; P ∪ R ; Q ∩ -distributive R ;( P ∩ Q ) = R ; P ∩ R ; Q reflexive E ⊆ R co-reflexive R ⊆ E transitive R ; R ⊆ R dense R ⊆ R ; R idempotent R ; R = R contact R ; R ∪ E = R kernel R ; R ∩ E = R ;E test R ;T ∩ E = R co-test R ;O ∪ E = R vector R ;T = R Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 13

  14. Algebraic Structures ( S , + , � , 0 , ⊤ ) bounded distributive lattice, ( S , + , · , 0 , 1) pre-left semiring and ⊤ = ⊤ · x x · ( y · z ) = ( x · ( y · 1)) · z ( x · z ) � ( y · z ) = (( x · 1) � ( y · 1)) · z dual ( x · y ) d = ( x · 1) d · y d ( x + y ) d = x d � y d x dd = x 1 d = 1 Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 14

  15. Relationships between Properties co-total transitive dense total idempotent co-reflexive reflexive up-closed up-closed ∩ -distributive ∪ -distributive contact kernel ∩ -distributive kernel vector ∪ -distributive contact test co-test Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 15

  16. Closure Properties d O E T ∪ ∩ ; total − � � � � � ▽ co-total − � � � � � � transitive − − � � � � � dense − − � � � � △ reflexive − � � � � � � − co-reflexive � � � � � � − − − idempotent � � � � up-closed � � � � � � � ∪ -distributive − � � � � � ▽ ∩ -distributive − � � � � � △ − − − a contact � � � � − − − a kernel � � � � a ∪ -distributive contact − − − − � � � a ∩ -distributive kernel − − − − � � � − a test � � � � � � − a co-test � � � � � � − a vector � � � � � � Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 16

  17. Topological Contact • according to G. Aumann (1970) • set of persons A • set of topics T • t ( x ) = topics person x is interested in t : A → 2 T • contact multirelation R : A ↔ 2 A � R x , Y ⇔ t ( x ) ⊆ t ( y ) y ∈ Y Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 17

  18. Axioms of Contact Relations ( K 0 ) ¬∃ x ∈ A : R x , ∅ ( K 1 ) ∀ x ∈ A : R x , { x } ∀ x ∈ A : ∀ Y , Z ∈ 2 A : R x , Y ∧ Y ⊆ Z ⇒ R x , Z ( K 2 ) ∀ x ∈ A : ∀ Y , Z ∈ 2 A : R x , Y ∧ ( ∀ y ∈ Y : R y , Z ) ⇒ R x , Z ( K 3 ) ∀ x ∈ A : ∀ Y , Z ∈ 2 A : R x , Y ∪ Z ⇔ R x , Y ∨ R x , Z ( K 4 ) ( K 1 )–( K 3 ) contact relation ( K 0 )–( K 4 ) topological contact relation Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 18

  19. Examples of Topological Contact A ↔ 2 A • ∈ • R x , Y ⇔ ∃ y ∈ Y : f ( x ) = f ( y ) where f : A → B N ↔ 2 N • R x , Y ⇔ ∃ y ∈ Y : x ≤ y • R x , Y ⇔ ∃ y 1 , y 2 ∈ Y : y 1 ≤ x ≤ y 2 • R x , Y ⇔ ∃ y i ∈ Y : ∃ r i ∈ Q : x = � r i y i R n ↔ 2 R n 0 : � r i = 1 ∧ x = � r i y i • R x , Y ⇔ ∃ y i ∈ Y : ∃ r i ∈ Q + • R x , Y ⇔ ∀ ε > 0 : ∃ y ∈ Y : d ( x , y ) < ε satisfy ( K 0 )–( K 3 ), some also ( K 4 ) Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 19

  20. Axioms using Multirelational Operations ( K 0 ) R ;O = O co-total ( K 1 ) E ⊆ R (if R up-closed) reflexive ( K 2 ) R ;E = R up-closed ( K 3 ) R ; R ⊆ R transitive ( K 4 ) R ;( P ∪ Q ) = R ; P ∪ R ; Q (if R up-closed) ∪ -distributive Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 20

  21. Conclusion • multirelations describe topological contact • also consider not up-closed multirelations • many results hold in weak algebras • study connections to topology and closure systems • generate further counterexamples • give complete axioms Rudolf Berghammer, Walter Guttmann · RAMiCS · 2015-09-30 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend