tracking predictable drifting parameters
play

Tracking Predictable Drifting Parameters Paulo Serra of a Time - PowerPoint PPT Presentation

Tracking Predictable Drifting Parameters of a Time Series Tracking Predictable Drifting Parameters Paulo Serra of a Time Series The Model Joint work with Eduard Belitser Results Examples of Parameter Variation Paulo Serra


  1. Tracking Predictable Drifting Parameters of a Time Series Tracking Predictable Drifting Parameters Paulo Serra of a Time Series The Model Joint work with Eduard Belitser Results Examples of Parameter Variation Paulo Serra Construction of Gain Functions Department of Mathematics and Computer Science Application: Eindhoven University of Technology Quantile Tracking 12th September, 2013 References 1 / 22

  2. Model Description Tracking Assume we observed X n = ( X 0 , X 1 , . . . , X n ) following: Predictable Drifting Parameters of a Time X 0 ∼ P 0 , X k | X k − 1 ∼ P k ( ·| X k − 1 ) , k ∈ N . Series Paulo Serra • X k takes values in X ⊆ R l , l ∈ N (i.e. P ( X k ∈ X ) = 1 ). The Model Results • The distribution of X n , n ∈ N 0 , is given by Examples of n Parameter P ( n ) = P ( n ) ( x n ) = � P k ( x k | x k − 1 ) , x k ∈ X k +1 , Variation Construction k =0 of Gain Functions where P 0 ( x 0 | x − 1 ) should be understood as P 0 ( x 0 ) . Application: Quantile Tracking • At time n ∈ N 0 , the underlying growing statistical model References is P ( n ) = � � n � k =0 P k ( x k | x k − 1 ) : P k ( ·| x k − 1 ) ∈ P k . 2 / 22

  3. Objective Tracking Predictable Drifting • Consider a filtration {F k } ∞ k = − 1 such that F k ⊆ σ ( X k ) . Parameters of a Time Series Paulo Serra • Consider a sequence of appropriately measurable operators A k , which map measures P k ( ·| x k − 1 ) ∈ P k The Model Results x k − 1 ∈ X k − 1 , A k ( P k ( ·| x k − 1 )) = θ k ( x k − 1 ) , Examples of Parameter Variation with θ k ( x k − 1 ) predictable with respect to F k . Construction of Gain Functions Application: Quantile Objective Tracking We would like to track θ k = θ k ( X k − 1 ) . References 3 / 22

  4. Definition of the Algorithm Tracking Predictable Drifting Assumption (A0) Parameters of a Time The drifting parameter satisfies P ( θ k ( X k − 1 ) ∈ Θ) for some Θ Series such that sup θ ∈ Θ � θ � 2 ≤ C Θ . Paulo Serra The Model Results The following algorithm constitutes our tracking sequence. Examples of Parameter Variation Tracking Algorithm Construction Define ˆ θ k +1 = ˆ θ k + γ k G k (ˆ of Gain θ k , X k ) , k ∈ N 0 where 0 ≤ γ k ≤ Γ Functions and arbitrary F − 1 -measurable ˆ θ 0 ∈ Θ ⊂ R d . Application: Quantile Tracking References The functions G k (ˆ θ k , X k ) are called gain vectors. 4 / 22

  5. Assumptions on the Gain Function Tracking Predictable Assumption (A1) Drifting Parameters � � For all k ∈ N 0 , constants λ 1 , λ 2 and θ k = A k P k ( ·| x k − 1 ) , of a Time Series g k (ˆ θ k , θ k ) = g k (ˆ G k (ˆ Paulo Serra � � θ k , θ k | X k − 1 ) = E θ k , X k ) |F k − 1 , The Model exists; for a F k − 1 -measurable symmetric PD matrix M k , a.s. Results g k (ˆ θ k , θ k | X k − 1 )= − M k (ˆ Examples of θ k − θ k ) , Parameter Variation 0 < λ 1 ≤ E [ λ (1) ( M k ) |F k − 2 ] ≤ λ ( d ) ( M k ) ≤ λ 2 < ∞ . Construction of Gain Functions Application: Assumption (A2) Quantile Tracking There exists a constant C g > 0 such that References θ k , θ k | X k − 1 ) � 2 ≤ C g , E � G k (ˆ θ k , X k ) − g k (ˆ k ∈ N 0 . 5 / 22

  6. Main Results L 1 risk bound Tracking Predictable Theorem (Bound on L 1 risk) Drifting Parameters Let (A0) – (A2) hold and δ k = δ k ( X k − 1 ) = ˆ of a Time θ k − θ k , k ∈ N 0 . Series Then for any k 0 , k ∈ N 0 and sequence { γ k , k ∈ N 0 } (satisfying Paulo Serra the conditions of the previous lemma) such that γ i λ 2 ≤ 1 , The Model i ∈ { k 0 , . . . , k } , the following relation holds: Results Examples of k k Parameter − λ 1 � 1 / 2 � � � � � γ 2 Variation E � δ k +1 � ≤ C 1 exp γ i + C 2 + i 2 Construction i = k 0 i = k 0 of Gain Functions + C 3 max k 0 ≤ i ≤ k E � θ i +1 − θ k 0 � , k 0 ≤ k, Application: Quantile Tracking √ C Θ + C Θ ) 1 / 2 , C 2 = C 1 / 2 2( ¯ where C 1 = (1 + λ 2 /λ 1 ) , References g C 3 = (1 + λ 2 /λ 1 ) . 6 / 22

  7. Stronger Assumptions on the Gain Function Tracking Predictable Assumption (A1) Drifting Parameters g k (ˆ θ k , θ k | X k − 1 ) = − M k (ˆ of a Time θ k − θ k ) . Series Paulo Serra 0 < λ 1 ≤ E [ λ (1) ( M k ) |F k − 2 ] ≤ λ ( d ) ( M k ) ≤ λ 2 < ∞ , (a.s.) The Model ↓ Results 0 < λ 1 ≤ λ (1) ( M k ) ≤ λ ( d ) ( M k ) ≤ λ 2 < ∞ , (a.s.) Examples of Parameter Variation Construction Assumption (A2) of Gain Functions θ k , θ k | X k − 1 ) � 2 ≤ C g , E � G k (ˆ θ k , X k ) − g k (ˆ Application: k ∈ N 0 . Quantile Tracking ↓ References θ k , X k ) � 2 ≤ C g , � G k (ˆ k ∈ N 0 , (a.s.) 7 / 22

  8. Main Results L p risk bound Tracking Predictable Theorem ( L p risk bound) Drifting Parameters Suppose that the conditions of the previous theorem are of a Time Series fulfilled. If, in addition (to assumption (A1)), λ (1) ( M i ) ≥ λ 1 Paulo Serra and � G i (ˆ θ i , X i ) � ≤ C g (instead of (A2)) a.s. for all The Model i = k 0 . . . , k , then for any p ≥ 1 Results Examples of k k � p/ 2 Parameter � � � E � δ k +1 � p p ≤ C ′ � + C ′ � γ 2 1 exp − pλ 1 γ i Variation 2 i Construction i = k 0 i = k 0 of Gain + C ′ k 0 ≤ i ≤ k E � θ i +1 − θ k 0 � p Functions 3 max p , k 0 ≤ k, Application: Quantile Tracking 1 = 3 p − 1 K p p E � δ k 0 � p 2 = 3 p − 1 2 p dB p C p � p , for C ′ p , C ′ 1 + K 2 � p λ 2 /λ 1 g References � p , and K p and B p are constants. C ′ 3 = 3 p − 1 � 1 + K 2 p λ 2 /λ 1 8 / 22

  9. Lipschitz Signal: θ n k = ϑ ( k/n ) , ϑ ( · ) ∈ L β k k Tracking − λ 1 � 1 / 2 � � � � � Predictable γ 2 E � δ k +1 � � exp γ i + + max k 0 ≤ i ≤ k E � θ i +1 − θ k 0 � , Drifting i 2 Parameters i = k 0 i = k 0 of a Time Series k k � p/ 2 � � � � � Paulo Serra E � δ k +1 � p γ 2 k 0 ≤ i ≤ k E � θ i +1 − θ k 0 � p p � exp − pλ 1 γ i + + max p , i i = k 0 i = k 0 The Model Results X n X n k | X n k ( ·| X n 0 ∼ P θ n 0 , k − 1 ∼ P θ n k − 1 ) , k ≤ n ∈ N , Examples of Parameter Variation • Assume that θ n k = ϑ ( k/n ) , with ϑ ( · ) ∈ L β , k = 1 , . . . , n . Construction of Gain • For 0 < β ≤ 1 , γ k ≡ C γ (log n ) (2 β − 1) / (2 β +1) n − 2 β/ (2 β +1) , Functions k 0 = K n = (log n ) 2 / (2 β +1) n 2 β/ (2 β +1) we get Application: Quantile Tracking β β E n − � n − � p 2 β +1 � δ k � 2 β +1 � δ k � p References sup ≤ C and sup E ≤ C. 2 β 2 β ϑ ∈L β ϑ ∈L β (log n ) (log n ) 2 β +1 2 β +1 k ≥ K n k ≥ K n 9 / 22

  10. Example 1 Signal + noise setting Tracking Predictable The model is: Drifting Parameters X k = θ k + ξ k , k ∈ N 0 , of a Time Series where { θ k } k ∈ N 0 is a predictable process ( θ k = θ k ( X k − 1 ) ), Paulo Serra { ξ k } k ∈ N 0 is a martingale difference noise with respect to the The Model filtration {F k } k ∈ N − 1 . Results Examples of We can simply take the following gain function Parameter Variation G k (ˆ θ k , X k ) = − (ˆ Construction θ k − X k ) , k ∈ N 0 , of Gain Functions Application: since Quantile Tracking g k (ˆ θ k , θ k | X k − 1 ) = E [ G k (ˆ θ k , X k ) | X k − 1 ] = − (ˆ θ k − θ k ) , k ∈ N 0 . References 10 / 22

  11. General Gain Construction Tracking Predictable Drifting Parameters • Assume each measure in P k = { P θ ( x | X k − 1 ) , θ ∈ Θ ⊂ R d } of a Time Series has a density p θ ( x | X k − 1 ) , θ ∈ Θ , with respect to some Paulo Serra σ -finite dominating measure. The Model Results • Assume also that there is a common support X for these Examples of Parameter densities, and that for any x ∈ X , x k − 1 ∈ X k − 1 , and Variation θ ∈ Θ , the partial derivatives ∂p θ ( x | x k − 1 ) /∂θ i , Construction of Gain i = 1 , . . . , d , exist and are finite. Functions Application: Quantile Tracking • Let ∇ θ log p θ ( x | x k − 1 ) be a gradient. References 11 / 22

  12. General Gain Construction Tracking Predictable Drifting Parameters We can use the gains of a Time Series G k ( ϑ, x k ) = ∇ ϑ log p ϑ ( x k | x k − 1 ) . Paulo Serra The Model Results Examples of If expectation and differentiation can be interchanged, then Parameter Variation � � � g k ( ϑ, θ | X k − 1 )= E θ ∇ ϑ log p ϑ ( X k | X k − 1 ) Construction � X k − 1 of Gain Functions � � � = ∇ ϑ E θ log p ϑ ( X k | X k − 1 ) � X k − 1 Application: � � = −∇ ϑ KL P θ ( ·| X k − 1 ) , P ϑ ( ·| X k − 1 ) . Quantile Tracking References 12 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend