toy models for rayleigh taylor instability
play

Toy models for Rayleigh- Taylor instability: Stuart Dalziel - PDF document

Toy models for Rayleigh- Taylor instability: Stuart Dalziel Department of Applied Mathematics and Theoretical Physics University of Cambridge International Workshop on the Physics of Compressible Turbulent Mixing 14 December 2001 (9:10


  1. Toy models for Rayleigh- Taylor instability: Stuart Dalziel Department of Applied Mathematics and Theoretical Physics University of Cambridge International Workshop on the Physics of Compressible Turbulent Mixing 14 December 2001 (9:10 – 9:30) with thanks to Joanne Holford (DAMTP) David Youngs (AWE) IWPCTM 8 – 1 – December 2001

  2. The growth question: ρ − ρ 2 , where A 1 2 h Agt = α = ρ + ρ 1 2 But what is α ? � 0.10, … 0.07, 0.06, … 0.03, 0.02 ? H Timescale: T = Ag If δ = h / H , and τ = t / T , δ = α τ 2 then IWPCTM 8 – 2 – December 2001

  3. Experiments Top view 200 mm End view 5 0 0 m m 400 mm IWPCTM 8 – 3 – December 2001

  4. Appropriate modelling (?) IWPCTM 8 – 4 – December 2001

  5. Growth Dimensional analysis/similarity theory h = α Ag t 2 . Single mode Layzer (1955) 2 x π ( ) For x , y a cos ζ = 0 λ dh = if w , dt 2 dw w ( ) ( ) then 2 E Ag 1 E C , + = − − D dt λ where 6 π h � − � E exp . = � � λ � � Experimentally C D ~ 10 � Does this make sense? 2 d h 2 Ag π Early time → linear theory h = 2 dt λ Ag λ Late time → constant velocity w = ∞ C D � h → w ∞ ( t − t 0 ) IWPCTM 8 – 5 – December 2001

  6. Structure Often described as ‘bubbles’… …but more like ‘thermals’ in miscible fluids IWPCTM 8 – 6 – December 2001

  7. Thermals Self-similar r = θ z V = γ r 3 . Buoyancy conserved g ′ V = g ′ γ r 3 = g ′ 0 V 0 . Constant Froude number 2 w 2 F = g r ′ Integrating w = dz / dt 1 2 γ θ 2 z t = ( ) 1 2 2 F g V ′ 0 0 Experimental results → F ≈ 1.2. IWPCTM 8 – 7 – December 2001

  8. Rayleigh-Taylor as thermals Froude number ~ 1.2 (aspect ratio 0.72) � C Thermal ≈ 1.3. Rayleigh-Taylor bubbles a little like thermals → C D ≈ 1.3 But in Rayleigh-Taylor environment • Density field not hydrostatic in ambient � Hydrostatic in mean density � halve buoyancy force → C D ≈ 2.6 • Flow around bubble affected by bubble moving in opposite direction � Drag due to twice rise speed of bubble → C D ≈ 10.4 In agreement with single mode experiments BUT natural R-T has more than one mode IWPCTM 8 – 8 – December 2001

  9. Multi-mode What happens if λ grows with h ? Let λ = ψ h Late times approximation: 1 2 dh Ag � � ( ) 1 2 1 E h = − ψ � � dt C � � D � � Ag ( ) ( ) 2 ( ) 2 � h 1 E t t Ag t t = − ψ − = α − 0 0 C D For C D = 10 and ψ = 1, α = 0.025. [Full Layzer growth with ψ = 1 gives α = 0.023.] Growth rate maximised with ψ ~ 10 giving α ~ 0.103 0.200 0.180 0.160 0.140 0.120 h/H ∂ h/dt 0.100 0.080 0.060 0.040 0.020 0.000 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 β ψ IWPCTM 8 – 9 – December 2001

  10. Where do the modes begin? How do they interact? � Nonlinear interaction? � Initial perturbation? If modes independent and equal amplitude: 0.500 Key 0.450 δ = α τ 2 with α = 0.06 λ /H = 0.002 0.400 λ /H = 0.004 λ /H = 0.008 λ /H = 0.016 0.350 λ /H = 0.032 λ /H = 0.064 0.300 λ /H = 0.128 δ = h/H λ /H = 0.256 λ /H = 0.512 0.250 λ /H = 1.024 0.200 0.150 0.100 0.050 0.000 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 τ = ( Ag/H ) 1/2 t Instantaneous nonlinear mode halving interaction when h = λ : 0.500 Key 0.450 δ = α τ 2 with α = 0.033 λ /H = 0.002 0.400 λ /H = 0.004 λ /H = 0.008 λ /H = 0.016 0.350 λ /H = 0.032 λ /H = 0.064 0.300 λ /H = 0.128 δ = h/H λ /H = 0.256 λ /H = 0.512 0.250 0.200 0.150 0.100 0.050 0.000 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 τ = ( Ag/H ) 1/2 t Which is it? IWPCTM 8 – 10 – December 2001

  11. Mixing See talk by Joanne Holford Energy budget * Can decompose PE into Background PE and Available PE . PE back is the minimum energy state that is achieved by adiabatic rearrangement of fluid parcels. Mixing increases PE back – it cannot decrease it! PE avail is the component of PE that can be converted into KE , heat (through dissipation) and, if mixing occurs, into PE back . = + PE PE Back PE Avail In the absence of external work: D D KE KE KE E avail PE avail PE avail PE avail PE PE back PE back PE back time IWPCTM 8 – 11 – December 2001

  12. Mixing efficiency * E PE PE ∆ ∆ ∆ back Back Back η = − = = Integral ( ) E KE PE PE dt ∆ − ∆ + ∆ ∆ + � ε avail Avail Back 0.500 0.450 0.400 Overall mixing efficiency η 0 0.350 0.300 0.250 0.200 0.150 0.100 Joanne Holford 0.050 0.000 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Angle of tank | α o | PE PE δ δ Back Back η = = instantane ous E KE PE − δ δ + δ Avail Avail 1.00 Joanne Holford 0.80 0.60 η instantaneous 0.40 0.20 0.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 Time t / τ IWPCTM 8 – 12 – December 2001

  13. Thermal Entrainment into a thermal dV wA = β dt … β = 0.18. Energetics of a thermal Mixing efficiency not well defined: depends on size of domain! Rayleigh-Taylor ρ 2 2 λ 2 h H ρ 1 IWPCTM 8 – 13 – December 2001

  14. h = α Agt 2 δ = ατ 2 w = 2 α Agt ω = 2 ατ V = 2 L 2 h Total potential energy PE * 2 4 Total PE 1 4 = = − α τ Total PE 0 Background potential energy ρ 1 ρ a 2 h H ρ b ρ 2 Changes due to entrainment between counter-flowing streams. Invoke entrainment hypothesis: u e = β w Area of entrainment independent of h ⇔ depth of entrainment comparable with λ � entraining area = ϕ × plan area . ( ) * 2 4 PE 1 = − − ϕβα τ Back IWPCTM 8 – 14 – December 2001

  15. Available potential energy ( ) * * * 2 4 PE PE PE 2 4 = − = − + ϕβ α τ Avail Tot Back 1.00 1 4 2 � � τ = 2 4 � � ( ) � � α + ϕβ � � 0.50 Potential energy PE( t )/PE(0) Key Experiment: PE Tot Experiment: PE Back Model: PE Back Model: PE Tot 0.00 -0.50 Joanne Holford’s experiments -1.00 0.0 1.0 2.0 3.0 4.0 5.0 Time t / τ IWPCTM 8 – 15 – December 2001

  16. Kinetic energy * 3 4 KE 16 = σα τ 0.400 0.350 0.300 Key Kinetic energy KE( t )/PE(0) Experiments Model: σ = 1 0.250 Model: σ = 2 0.200 0.150 Joanne Holford’s 0.100 experiments 0.050 0.000 0.0 1.0 2.0 3.0 4.0 5.0 Time t / τ Available energy changing * * * dE dKE dPE Avail Avail = + d d d τ τ τ ( ) 2 3 4 4 16 = − + ϕβ − σα α τ Hence, energy is lost whenever α < ¼ (for β = 0, σ = 1). IWPCTM 8 – 16 – December 2001

  17. Instantaneous mixing efficiency * dPE Back d τ η = − Inst * * dPE dKE Avail + d d τ τ ϕβ = 4 16 + ϕβ − σα So for ϕ = 16, β = 0.18, σ = 1, and α = 0.06, then η Inst = 0.49. 1.00 0.80 Thermal prediction Joanne Holford’s 0.60 η instantaneous experiments 0.40 0.20 0.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 Time t / τ IWPCTM 8 – 17 – December 2001

  18. Integral mixing efficiency If there no mixing after reaching the bottom… ( ) ( ) bot 0 PE PE − Back Back η = Integral ( ) 0 PE Avail 1 η = ϕβ Integral 8 For ϕ = 16 and β = 0.18, then η Integral = 0.36. IWPCTM 8 – 18 – December 2001

  19. If there is mixing after reaching the bottom… 1 ( ) � � * bot E 1 4 = + σα − ϕβ � � Avail 4 � � ( ) ( ) After bot bot If E E , then ∆ = η Back stab Avail 1 1 1 � � 1 4 η = ϕβ + η + σα − ϕβ � � Integral stab 8 2 4 � � For η stab = 0.2, then η Integral = 0.41. 0.500 0.450 0.400 Overall mixing efficiency η 0 0.350 0.300 Joanne Holford’s 0.250 experiments 0.200 0.150 0.100 0.050 0.000 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Angle of tank | α o | IWPCTM 8 – 19 – December 2001

  20. Extensions * ρ 2 2 λ 2 h ∆ c H ρ 1 Let ∆ c be the fractional displacement of the centroid of the bubble from z = 0. → * PE δ Back η = − Inst * * PE KE δ + δ Avail ϕβ = ( ) 4 4 4 16 + ϕβ − − ϕβ ∆ − σα c Pyramid ( ∆ c = 1/4): η Inst = 0.6. Parabolic ( ∆ c = 1/6): η Inst = 0.56. (gives linear mean concentration) IWPCTM 8 – 20 – December 2001

  21. How can we avoid having to specify C D ? Shell model GOY model (Gledzer–Ohkitani–Yamada): dU ( ) * * * * * * n ak U U bk U U ck U U = + + n n 1 n 2 n 1 n 1 n 1 n 2 n 1 n 2 + + − − + − − − dt 2 k U F − ν + n n n with k n = β n k 0 , a = 1, b = − ε and c = − 1 + ε . In Rayleigh-Taylor instability, energy input at all scales. dU ( ( ) ) n k U U k U U 1 k U U = − ε − − ε n n 1 n 2 n 1 n 1 n 1 n 2 n 1 n 2 + + − − + − − − dt 2 k U F − ν + n n n 2 dw w Recall Layzer model: ( ) ( ) 2 E Ag 1 E C + = − − D dt λ 1 E − n Hence F A g , where = n n 2 E + n 6 h π � − � n E exp and A n = A h n / h . = � � n � λ � n � � The mode penetrations h n and total penetration h are obtained from dh = n U and h max h . = n n dt n IWPCTM 8 – 21 – December 2001

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend