misg 2018 instability in fluids
play

MISG 2018: Instability in Fluids Yilun Wang, Nolwazi Nkomo, Shina D - PowerPoint PPT Presentation

MISG 2018: Instability in Fluids Yilun Wang, Nolwazi Nkomo, Shina D Oloniiju, Jessica Ihesie, Williams Chukwu, Keegan Anderson, Mojalefa Nchupang, Saul Hurwitz Supervisor: Prof David Mason January 13, 2018 Rayleigh-Taylor Instability g y j


  1. MISG 2018: Instability in Fluids Yilun Wang, Nolwazi Nkomo, Shina D Oloniiju, Jessica Ihesie, Williams Chukwu, Keegan Anderson, Mojalefa Nchupang, Saul Hurwitz Supervisor: Prof David Mason January 13, 2018

  2. Rayleigh-Taylor Instability g y j HEAVIER FLUID ∂φ 2 y = η ( x , t ) ρ 2 , p 2 , φ 2 ∂ y x i LIGHTER FLUID ∂φ 1 ∂ y ρ 1 , p 1 , φ 1

  3. Rayleigh-Taylor Instability The problem proposed is a situation with 2 fluids, one atop the other with different densities. Between them is the interface η ( x , t ) which is a perturbation across y = 0. Some assumptions are made: The vorticity is 0 (it is irrotational) so ∇ × v = 0 It is incompressible, meaning the volume is constant. This results in ∇ · v = 0

  4. Equations of State and Boundary Conditions ∂ 2 φ 1 ∂ x 2 + ∂ 2 φ 1 ∂ y 2 = 0 ∂ 2 φ 2 ∂ x 2 + ∂ 2 φ 2 ∂ y 2 = 0 y = 0 : ∂φ 1 ∂ y ( x , 0 , t ) = ∂η ∂ t ( x , t ) y = 0 : ∂φ 2 ∂ y ( x , 0 , t ) = ∂η ∂ t ( x , t ) y = 0 : ρ 1 [ ∂φ 1 ∂ t ( x , 0 , t )+ g η ( x , t )] = ρ 2 [ ∂φ 2 ∂ t ( x , 0 , t )+ g η ( x , t )]

  5. Form of Solution and Dispersion Relation φ 1 ( x , y , t ) = F 1 ( y ) exp [ i ( kx − ω t )] φ 2 ( x , y , t ) = F 2 ( y ) exp [ i ( kx − ω t )] � kg ( ρ 2 − ρ 1 ) ω = ± i ρ 1 + ρ 2

  6. Solution and Analysis � k ( ρ 1 + ρ 2 ) g ( ρ 2 − ρ 1 )( e β t − e − β t ) Re ( η ) = A 1 cos( kx ) This is an unstable exponentially growing standing wave if ρ 2 > ρ 1 , and is a stable standing wave if ρ 1 > ρ 2

  7. Rayleigh-Taylor Instability with Surface Tension g y j HEAVIER FLUID ∂φ 2 y = η ( x , t ) T ∂ 2 η ρ 2 , p 2 , φ 2 ∂ y ∂ x 2 x i LIGHTER FLUID ∂φ 1 ∂ y ρ 1 , p 1 , φ 1

  8. Instability of Fluids with Interfacial Tension Net upward force per unit area due to interfacial tension T ∂ 2 y ∂ x 2 ∂ 2 φ 1 ∂ x 2 + ∂ 2 φ 1 ∂ y 2 = 0 ∂ 2 φ 2 ∂ x 2 + ∂ 2 φ 2 ∂ y 2 = 0 y = 0 : ∂φ 1 ∂ y ( x , 0 , t ) = ∂η ∂ t ( x , t ) y = 0 : ∂φ 2 ∂ y ( x , 0 , t ) = ∂η ∂ t ( x , t ) p 1 ( x , 0 , t ) + T ∂ 2 y y = 0 : ∂ x 2 = p 2 ( x , 0 , t )

  9. Form of Solution and Dispersion Relation The form of solution: η ( x , t ) = η 0 exp [ i ( kx − ω t )] φ 1 ( x , y , t ) = F 1 ( y ) exp [ i ( kx − ω t )] φ 2 ( x , y , t ) = F 2 ( y ) exp [ i ( kx − ω t )] Dispersion Relation: � k ( ρ 2 + ρ 1 )( − g ( ρ 2 − ρ 1 ) + Tk 2 ) ω = ±

  10. Solution and Analysis Stable if k 2 > ( ρ 2 − ρ 1 ) g T � � 4 π 2 T T λ < ( ρ 2 − ρ 1 ) g = 2 π ( ρ 2 − ρ 1 ) g .

  11. Kelvin-Helmholtz Instability g y j v 2 y = η ( x , t ) ρ, p 2 , φ 2 x i v 1 ρ, p 1 , φ 1

  12. Kelvin-Helmholtz Instability = V 1 + ∂φ 1 = ∂φ 1 V (1) V (1) ∂ x , x y ∂ y = V 2 + ∂φ 2 = ∂φ 2 V (2) V (2) ∂ x , x y ∂ y ∂ 2 φ 1 ∂ x 2 + ∂ 2 φ 1 ∂ 2 φ 2 ∂ x 2 + ∂ 2 φ 2 ∂ y 2 = 0; ∂ y 2 = 0 , ∂φ 1 ∂ y ( x , 0 , t ) = ∂η ∂η ∂ t + V 1 ∂ y . ∂φ 2 ∂ y ( x , 0 , t ) = ∂η ∂η ∂ t + V 2 ∂ y . ∂φ 1 ∂ x + ∂φ 1 ∂φ 2 ∂ x + ∂φ 2 V 1 ∂ t = V 2 ∂ t .

  13. Form of Solution and Dispersion Relation The form of solution: η ( x , t ) = η 0 exp [ i ( kx − ω t )] φ 1 ( x , y , t ) = F 1 ( y ) exp [ i ( kx − ω t )] φ 2 ( x , y , t ) = F 2 ( y ) exp [ i ( kx − ω t )] Dispersion Relation: ω = k ( V 2 + V 1 ) ± ik ( V 1 − V 2 ) 2

  14. Solution and Analysis The perturbation solution is � � kx − k � − k � η ( x , t ) = η 0 exp 2( V 2 + V 1 ) t 2( V 1 − V 2 ) t + i � � kx − k � + k � η 0 exp 2( V 2 + V 1 ) t 2( V 1 − V 2 ) t i � kx − k � � � − k � Re [ η ( x , t )] = η 0 cos 2( V 2 + V 1 ) t exp 2( V 2 + V 1) t � − k �� + exp 2( V 1 − V 2) t This is unstable for V 1 < V 2 and V 2 < V 1 .

  15. Kelvin-Helmholtz and Rayleigh-Taylor Instability with Interfacial Tension y j v 2 p 2 T ∂ 2 η ρ 2 , p 2 ∂ x 2 x i v 1 ρ 1 , p 1 p 1

  16. Kelvin-Helmholtz and Rayleigh-Taylor Instability with Interfacial Tension = V 1 + ∂φ 1 = ∂φ 1 V (1) V (1) ∂ x , x y ∂ y = V 2 + ∂φ 2 = ∂φ 2 V (2) V (2) ∂ x , x y ∂ y ∂ 2 φ 1 ∂ x 2 + ∂ 2 φ 1 ∂ 2 φ 2 ∂ x 2 + ∂ 2 φ 2 ∂ y 2 = 0; ∂ y 2 = 0 , ∂φ 1 ∂ y ( x , 0 , t ) = ∂η ∂η ∂ t + V 1 ∂ y . ∂φ 2 ∂ y ( x , 0 , t ) = ∂η ∂η ∂ t + V 2 ∂ y . p 1 ( x , 0 , t ) + T ∂ 2 y y = 0 : ∂ x 2 = p 2 ( x , 0 , t )

  17. Form of Solution and Dispersion Relation The form of solution: η ( x , t ) = η 0 exp [ i ( kx − ω t )] φ 1 ( x , y , t ) = F 1 ( y ) exp [ i ( kx − ω t )] φ 2 ( x , y , t ) = F 2 ( y ) exp [ i ( kx − ω t )] k = ρ 1 V 1 + ρ 2 V 2 ± √ Q ω ρ 1 + ρ 2 where Q = − ρ 1 ρ 2 ( V 1 − V 2 ) 2 + ( ρ 1 + ρ 2 )( Tk − g / k ( ρ 2 − ρ 1 ))

  18. Solution and Analysis ( ρ 1 + ρ 2 )( Tk − g It is unstable when ( V 1 − V 2 ) 2 > k ( ρ 2 − ρ 1 )) ρ 1 ρ 2 � g k > T ( ρ 2 − ρ 1 ) is the first necessary condition for stability

  19. Graphical Analysis for ρ 2 > ρ 1 f ( k ) ( v 1 − v 2 ) 2 k f ( k ) = ( ρ 1 + ρ 2 )( Tk − g k ( ρ 2 − ρ 1 )) ρ 1 ρ 2

  20. Graphical Analysis for ρ 1 > ρ 2 f ( k ) ( v 1 − v 2 ) 2 k f ( k ) = ( ρ 1 + ρ 2 )( Tk + g k ( ρ 1 − ρ 2 )) ρ 1 ρ 2

  21. Benard Problem T L − ∆ T cold z = d VISCOUS FLUID k AT REST z = 0 hot T L j i

  22. Benard Problem We wish to study the instability in the fluid owing to heat transfer - that is, when does the heat transfer mechanism switch from conduction to convection Temperature Gradient: dT dz = − ∆ T d Navier-Stokes Momentum Eqn: ρ Dv Dt = −∇ p + µ ∇ 2 v + ρ g Energy Eqn: DT Dt = κ ∇ 2 T +viscous 2nd order terms ρ (1 − α ( T − ˜ Equation of State: ρ = ˜ T ))

  23. Benard Problem - Unperturbed State v 0 = 0 T = T 0 ( z ) ρ = ρ 0 ( z ) p = p 0 ( z ) Simplified Constitutive Eqns: dp 0 dz = − ρ 0 g κ d 2 T 0 dz 2 = 0 ρ (1 − α ( T 0 − ˜ ρ 0 = ˜ T ))

  24. Benard Problem - Unperturbed State Solving yields: T 0 ( z ) = T L − ∆ Tz d ρ (1 − α ( T L − ∆ Tz − ˜ ρ 0 ( z ) = ˜ T )) d ρ z ( α ( T L − ∆ Tz − ˜ p 0 ( z ) = C + g ˜ T ) − 1) 2 d

  25. Perturbation and Boussinesq Approximation We make the Boussinesq Approximation: we take ρ to be constant and approximately ˜ ρ unless it gives rise to buoyancy forces in the Navier-Stokes eqn We perturb the state by making it no longer at rest: v ( x , y , z , t ) = 0 + v 1 ( x , y , z , t ) T ( x , y , z , t ) = T 0 ( z ) + T 1 ( x , y , z , t ) ρ ( x , y , z , t ) = ρ 0 ( z ) + ρ 1 ( x , y , z , t ) p ( x , y , z , t ) = p 0 ( z ) + p 1 ( x , y , z , t )

  26. New Constitutive Equations We still have incompressibility: ∇ · v = ∇ · v 1 = 0 ρ∂ v 1 ∂ t = −∇ p 1 + µ ∇ 2 v 1 + ρ 1 g ˜ ∂ T 1 ∆ T ∂ t − v ( z ) = κ ∇ 2 T 1 1 d ρ 1 = − ˜ ρα T 1

  27. Form of Solution and Eigenvalue Problem We want to find v ( z ) to analyse the stability of the system. 1 We assume the form v ( z ) = w ( z ) f ( x , y ) e st 1 We obtain an eigenvalue problem with eigenfunction w(z) �� � z − a 2 ) − α a 2 g dT 0 κ ( D 2 z − a 2 ) − s ν ( D 2 z − a 2 ) − s ( D 2 � � � w ( z ) dz = 0

  28. Boundary Conditions and Form of Solution w (0) = w ( d ) = 0 as v ( z ) would be 0 at the boundary, as the 1 boundaries are not moving. d 2 w dz 2 (0) = d 2 w dz 2 ( d ) = 0 d 4 w dz 4 (0) = d 4 w dz 4 ( d ) = 0 To satisfy the boundary conditions, we let w ( z ) = sin( n π z d ); n = 1 , 2 , 3 ..

  29. Stability for Negative Temperature Gradient To analyse stability we need to focus on the e st factor. Solving the eigenvalue problem for w(z) yields an equation for s. Solving ( ν − κ ) 2 a 6 ∗ + 4 α a 2 g ∆ T > 0 for a yields that in this d case, s is always real However, for stability, we need s < 0. This is true when α gd 3 ∆ T < 27 π 4 νκ 4 Where Rayleigh’s number is defined as R = α gd 3 ∆ T νκ

  30. Stability for Positive Temperature Gradient ∗ − 4 α a 2 g ∆ T Solving ( ν − κ ) 2 a 6 > 0 for a yields that in this d case, s is not always real. We require α g ∆ Td 3 ( ν − κ ) 2 > 27 π 4 16 in order for s to be real, otherwise we get an oscillating velocity, where Mason’s number is defined as M = α g ∆ Td 3 ( ν − κ ) 2 > 27 π 4 16 If s is real, for stability, we need s < 0. This is true when α gd 3 ∆ T > − 27 π 4 νκ 4 Which is always true, as the Rayleigh number is always positive

  31. Convective Unstable Fluid T L − ∆ T cold z = d z = 0 hot T L

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend