towards real time simulation
play

Towards Real-time Simulation of Hyperelastic Materials A - PowerPoint PPT Presentation

Towards Real-time Simulation of Hyperelastic Materials A Dissertation Presentation Tiantian Liu April 24 th 2018 Deformable Body Simulation Limited Human Interactivity in Mixed Reality Environments Limited Materials in Real-time Simulators


  1. Remark: Projective Dynamics 2 𝑼 π’š βˆ’ 𝒒 π‘˜ 𝐹 π’š = min π‘₯ π‘˜ 𝑯 π’Œ π’’βˆˆβ„³ π‘˜ 1 + 1 𝑦 βˆ’ 𝑧 π‘ˆ 𝑡 𝑦 βˆ’ 𝑧 2 𝑒𝑠 π’š π‘ˆ π‘΄π’š βˆ’ 𝑒𝑠 π’š π‘ˆ 𝑲𝒒 + 𝐷 min 2β„Ž 2 𝑒𝑠 π‘¦βˆˆβ„ π‘œΓ—3 ,π’’βˆˆπ“  Like before, 𝑡, 𝑴, 𝑲, 𝒅 does not depend on π’š and 𝒒  If we fix π’š -> easy to solve for 𝒒 : Projection βˆ’1  If we fix 𝒒 -> easy to solve for π’š : π’š βˆ— = 𝑡 𝑡 β„Ž 2 + 𝑴 β„Ž 2 𝒛 + 𝑲𝒒

  2. Limitation: Projective Dynamics 2 𝑼 π’š βˆ’ 𝒒 π‘˜ 𝐹 π’š = min π‘₯ π‘˜ 𝑯 π’Œ π’’βˆˆβ„³ π‘˜ 𝐸𝑗𝑑𝑑𝑠𝑓𝑒𝑓 π‘‡β„Žπ‘π‘žπ‘“ πΈπ‘“π‘‘π‘‘π‘ π‘—π‘žπ‘’π‘π‘  βˆ’ π‘„π‘ π‘π‘˜π‘“π‘‘π‘’π‘—π‘π‘œ 2 Special Requirement for the Energy Representation

  3. More Materials? Soft ARAP Stiff ARAP

  4. Spline-Based Materials [Xu et al. 2015] Polynomial Soft ARAP Stiff ARAP Material [Xu et al. 2015]

  5. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials Tiantian Liu, Sofien Bouaziz, Ladislav Kavan ACM Transactions on Graphics 36(3) [Presented at SIGGRAPH],2017.

  6. Reformulation of Projective Dynamics 1 + 1 𝑦 βˆ’ 𝑧 π‘ˆ 𝑡 𝑦 βˆ’ 𝑧 2 𝑒𝑠 π’š π‘ˆ π‘΄π’š βˆ’ 𝑒𝑠 π’š π‘ˆ 𝑲𝒒 + 𝐷 min 2β„Ž 2 𝑒𝑠 π‘¦βˆˆβ„ π‘œΓ—3 ,π’’βˆˆπ“ 1 + 1 2 𝑒𝑠 π’š π‘ˆ π‘΄π’š βˆ’ 𝑒𝑠 π’š π‘ˆ 𝑲𝒒(π’š) + 1 𝑦 βˆ’ 𝑧 π‘ˆ 𝑡 𝑦 βˆ’ 𝑧 2 𝑒𝑠 𝒒(π’š) 𝑼 𝑻𝒒(π’š) min 2β„Ž 2 𝑒𝑠 π‘¦βˆˆβ„ π‘œΓ—3 𝒉(π’š)

  7. Reformulation of Projective Dynamics 1 + 1 2 𝑒𝑠 π’š π‘ˆ π‘΄π’š βˆ’ 𝑒𝑠 π’š π‘ˆ 𝑲𝒒(π’š) + 1 𝑦 βˆ’ 𝑧 π‘ˆ 𝑡 𝑦 βˆ’ 𝑧 2 𝑒𝑠 𝒒(π’š) 𝑼 𝑻𝒒(π’š) min 2β„Ž 2 𝑒𝑠 π‘¦βˆˆβ„ π‘œΓ—3 𝒉(π’š) 𝛼𝒉 π’š = 𝑡 β„Ž 2 π’š βˆ’ 𝒛 + π‘΄π’š βˆ’ 𝑲𝒒 π’š + πœ–π’’ π’š : (𝑻𝒒 π’š βˆ’ 𝑲 𝑼 π’š) πœ–π’š 0

  8. Projection Differential 𝑯 𝑼 π’š 2 = 𝑯 𝑼 π’š βˆ’ 𝒒 π’š π‘ˆ πœ€ 𝑯 𝑼 π’š βˆ’ 𝒒 π’š 𝑯 𝑼 πœ€π’š 𝒒(π’š) βˆ’πœ€π’’ π’š π‘ˆ 𝑯 𝑼 π’š βˆ’ 𝒒 π’š πœ€π’’ π’š

  9. Reformulation of Projective Dynamics 1 + 1 2 𝑒𝑠 π’š π‘ˆ π‘΄π’š βˆ’ 𝑒𝑠 π’š π‘ˆ 𝑲𝒒(π’š) + 1 𝑦 βˆ’ 𝑧 π‘ˆ 𝑡 𝑦 βˆ’ 𝑧 2 𝑒𝑠 𝒒(π’š) 𝑼 𝑻𝒒(π’š) min 2β„Ž 2 𝑒𝑠 π‘¦βˆˆβ„ π‘œΓ—3 𝒉(π’š) 𝛼𝒉 π’š = 𝑡 β„Ž 2 π’š βˆ’ 𝒛 + π‘΄π’š βˆ’ 𝑲𝒒 π’š + πœ–π’’ π’š : (𝑻𝒒 π’š βˆ’ 𝑲 𝑼 π’š) πœ–π’š βˆ’1 𝑡 ( 𝑡 𝑡 β„Ž 2 + 𝐌) βˆ’1 𝛼𝒉 π’š = π’š βˆ’ β„Ž 2 + 𝑴 β„Ž 2 𝒛 + 𝑲𝒒 π’š βˆ— = π’š βˆ’ (𝑡/β„Ž 2 + 𝑴) βˆ’1 𝛼𝒉 π’š π’š βˆ—

  10. Reformulation of Projective Dynamics Compare to one Newton step: π’š βˆ— = π’š βˆ’ 𝜷 𝛼 2 𝑕(π’š) βˆ’1 𝛼𝑕 π’š  𝛽 : Step size, usually decided by linesearch, typical value is 1.  𝛼 2 𝑕 π’š : Hessian Matrix, 𝑡/β„Ž 2 + 𝛼 2 𝐹(π’š) π’š βˆ— = π’š βˆ’ (𝑡/β„Ž 2 + 𝑴) βˆ’1 𝛼𝒉 π’š

  11. Quasi-Newton Formulation π’š βˆ— = π’š βˆ’ 𝛽(𝑡/β„Ž 2 + 𝑴) βˆ’1 𝛼𝒉 π’š 𝛽 = 1 Projective Dynamics: A Quasi Newton method applied on a special type of energy

  12. Supporting More General Materials π’š βˆ— = π’š βˆ’ 𝛽(𝑡/β„Ž 2 + 𝑴) βˆ’1 𝛼𝒉 π’š This quasi-Newton formulation can be used for any hyperelastic material, but: We need to do line-search β€’ 𝛽 = 1 only works for Projective Dynamics β€’ We need to define the proper weights π‘₯ 𝑗 β€’ 𝑡/β„Ž 2 + π‘˜ π‘₯ 𝑼 β€’ π‘˜ 𝑯 π’Œ 𝑯 π’Œ

  13. Strain-Stress Curve for PD 𝑡/β„Ž 2 + π‘˜ π‘₯ 𝑼 β€’ π‘˜ 𝑯 π’Œ 𝑯 π’Œ π‘₯ π‘˜ Stress Strain

  14. Supporting More General Materials 𝑡/β„Ž 2 + π‘˜ π‘₯ 𝑼 β€’ π‘˜ 𝑯 π’Œ 𝑯 π’Œ Stress π‘₯ π‘˜ Strain

  15. Supporting More General Materials

  16. Quasi-Newton Algorithm Compute Gradient

  17. Quasi-Newton Algorithm Evaluate Descent Direction

  18. Quasi-Newton Algorithm Line Search

  19. Quasi-Newton Algorithm

  20. We can do more

  21. L-BFGS Acceleration Projective Dynamics Quasi-Newton Method Exact Solution

  22. L-BFGS Acceleration Quasi-Newton Projective Dynamics Method

  23. Core of Quasi-Newton Methods βˆ’1 βˆ†π’š = βˆ’ 𝑩 𝛼𝒉 π’š 𝑡 𝒉 π’š π’Š πŸ‘ + 𝑴 π’š

  24. L-BFGS with rest-pose Hessian

  25. L-BFGS with rest-pose Hessian

  26. L-BFGS with Scaled Identity

  27. L-BFGS with updating Hessian

  28. Performance of L-BFGS family

  29. Results: Accuracy

  30. Results: Robustness

  31. Results: Collision

  32. Results: Anisotropy

  33. Results: Spline-Based Materials

  34. Remark  Our method is:  General: supports a variety types of hyperelastic materials  Fast: >10x faster compared to Newton’s method to achieve similar accuracy level  Simple: avoids Hessian computation, avoids definiteness fix Simple

  35. Towards Real-time Simulation of Deformable Objects: Generalization of Spatial Discretization Models Fast Mass Projective Spring System Dynamics

  36. Towards Real-time Simulation of Deformable Objects: Generalization of Material Models + Acceleration Projective Quasi-Newton Dynamics Methods

  37. Towards Real-time Simulation of Deformable Objects: What’s Next? Quasi-Newton ? Methods

  38. Core of Our Methods βˆ’1 βˆ†π’š = βˆ’ 𝑡 π’Š πŸ‘ + 𝑴 𝛼g(𝐲) 𝑡 Γ— π’Š πŸ‘ + 𝑴 =

  39. Core of Our Methods βˆ’1 βˆ†π’š = βˆ’ 𝑡 π’Š πŸ‘ + 𝑴 𝛼g(𝐲) Γ— =

  40. Time Varying Events  Collisions  Tearing or Cutting Γ—

  41. Collisions

  42. Collisions

  43. Collision: Soft Constraint π‘œ 𝑦 𝑑 𝑦 𝑙 π‘‘π‘π‘š 2 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ , 𝑗𝑔 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ < 0 2 𝐹 π‘‘π‘π‘š = 0 , π‘π‘’β„Žπ‘“π‘ π‘₯𝑗𝑑𝑓

  44. Collision: Soft Constraint 𝑙 π‘‘π‘π‘š 2 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ , 𝑗𝑔 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ < 0 2 𝐹 π‘‘π‘π‘š = 0 , π‘π‘’β„Žπ‘“π‘ π‘₯𝑗𝑑𝑓 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ π‘œ 𝑙 π‘‘π‘π‘š , 𝑗𝑔 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ < 0 𝛼𝐹 π‘‘π‘π‘š = 0 , π‘π‘’β„Žπ‘“π‘ π‘₯𝑗𝑑𝑓 𝑙 π‘‘π‘π‘š π‘œπ‘œ π‘ˆ , 𝑗𝑔 𝑦 βˆ’ 𝑦 𝑑 π‘ˆ π‘œ < 0 𝛼 2 𝐹 π‘‘π‘π‘š = 0 , π‘π‘’β„Žπ‘“π‘ π‘₯𝑗𝑑𝑓

  45. Quasi-Newton Algorithm with Collisions 𝛼𝐹 π‘‘π‘π‘š 0 𝐹 π‘‘π‘π‘š

  46. Tearing

  47. Tearing

  48. Tearing

  49. Tearing

  50. Tearing

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend