towards fast puiseux series computation
play

Towards fast Puiseux series computation Adrien Poteaux , Marc - PowerPoint PPT Presentation

Towards fast Puiseux series computation Adrien Poteaux , Marc Rybowicz : LIFL - Universit Lille 1 : XLIM - Universit de Limoges Computer algebra and polynomials Workshop, Linz November 25th, 2013 adrien.poteaux@lifl.fr


  1. Towards fast Puiseux series computation Adrien Poteaux ⋆ , Marc Rybowicz † ⋆ : LIFL - Université Lille 1 † : XLIM - Université de Limoges Computer algebra and polynomials Workshop, Linz November 25th, 2013 adrien.poteaux@lifl.fr Puiseux series 1 / 16

  2. Algebraic plane curves: a projective point of view y 3 K = Q ( α ) a number field y ′ 2 y ′′ F ( X , Y ) ∈ K [ X , Y ] 2 C = { ( x , y ) ∈ C 2 | F ( x , y ) = 0 } Let x 0 ∈ C : y 2 y ′′ Fiber at x 0 : 1 F ( x 0 ) = { roots of F ( x 0 , Y ) = 0 } . y ′ 1 y 1 Regular point : # F ( x 0 ) = d Y . Critical point : # F ( x 0 ) < d Y . = ⇒ roots of R F = Res Y ( F , F Y ) . x 0 α 1 α 2 adrien.poteaux@lifl.fr Puiseux series 1 / 16

  3. Puiseux series: a generalization of formal power series x 0 regular ; F ( x 0 ) = { y 1 , · · · , y d Y } . Theorem (Implicit function theorem) ∞ α ik ( X − x 0 ) k s.t � There are d Y series Y i ( X ) = k = 0 F ( X , Y i ( X )) = 0 around x 0 and Y i ( x 0 ) = y i . adrien.poteaux@lifl.fr Definition 2 / 16

  4. Puiseux series: a generalization of formal power series x 0 regular ; F ( x 0 ) = { y 1 , · · · , y d Y } . Theorem (Implicit function theorem) ∞ α ik ( X − x 0 ) k s.t � There are d Y series Y i ( X ) = k = 0 F ( X , Y i ( X )) = 0 around x 0 and Y i ( x 0 ) = y i . x 0 critical Theorem (Puiseux) ∞ k � α ik ζ jk ei s.t. There are d Y series Y ij ( X ) = e i ( X − x 0 ) k = n i F ( X , Y ij ( X )) = 0 for all 1 ≤ j ≤ e i , 1 ≤ i ≤ s, with ζ e i primitive e i -th root of unity, e i e 1 , . . . , e s partition of d Y (ramification indices). adrien.poteaux@lifl.fr Definition 2 / 16

  5. Long term goal Puiseux series � � � Monodromy group � � � Effective Abel-Jacobi theorem ւ ց Computer Algebra Physics Integral basis computation.s KP & KdV equations Algebraic solutions of ODEs Differential Galois theory adrien.poteaux@lifl.fr Motivations 3 / 16

  6. Difficult part is the singular part ∞ k � α ik ζ jk S ij ( X − x 0 ) = e i ( X − x 0 ) ei k = n i r ij k � α ik ζ jk ei + next terms e i ( X − x 0 ) = k = n i r ij is the regularity index ; r i = r ij for 1 ≤ j ≤ e i Next terms can be computed using quadratic Newton iterations Kung & Traub 1978, All Algebraic Functions Can Be Computed Fast adrien.poteaux@lifl.fr Singular part 4 / 16

  7. Singulart part computation: the Newton-Puiseux algorithm Newton, 1676 → introduction of the concept. Puiseux, 1850 → rediscovers ; first procedure. Chystov, 1986 → “Newton-Puiseux bit complexity is polynomial” . Duval, 1989 → rational algorithm ; arithmetic complexity O ( D 8 ) . Walsh, 2000 → bit complexity O ˜( D 36 ) (classical algorithm). Walsh, 1999 → polynomial size for rational coefficients, no algorithm . Rybowicz & P., 2008 → improved arithmetic complexity: O ˜( D 5 ) . adrien.poteaux@lifl.fr Newton-Puiseux algorithm 5 / 16

  8. The Newton-Puiseux algorithm: main tools F ( X , Y ) = Y 7 + Y 5 X − 2 Y 4 X + 5 Y 4 X 3 + 4 Y 2 X 2 + X 6 adrien.poteaux@lifl.fr Newton-Puiseux algorithm 6 / 16

  9. Support of a polynomial F ( X , Y ) = Y 7 X 0 + Y 5 X 1 − 2 Y 4 X 1 + 5 Y 3 X 4 − Y 3 X 2 + 4 Y 2 X 2 + Y 0 X 6 × Supp(F) = { ( i , j ) ∈ N 2 | a ij � = 0 } 6 4 2 1 0 2 3 4 5 7 adrien.poteaux@lifl.fr Newton-Puiseux algorithm 6 / 16

  10. Newton polygon � a ij Y i X j F ( X , Y ) = i , j × Supp(F) = { ( i , j ) ∈ N 2 | a ij � = 0 } 6 N ( F ) — N ( F ) : lower part of the convex hull of Supp(F). 2 1 0 2 4 7 adrien.poteaux@lifl.fr Newton-Puiseux algorithm 6 / 16

  11. Characteristic polynomial � a ij Y i X j F ( X , Y ) = i , j × Supp(F) = { ( i , j ) ∈ N 2 | a ij � = 0 } 6 N ( F ) — N ( F ) : lower part of the convex hull of Supp(F). Characteristic polynomial : 2 ∆ , slope − m q i − i 0 � 1 φ ∆ ( T ) = a ij T q ( i , j ) ∈ ∆ 0 i 0 = 2 4 7 adrien.poteaux@lifl.fr Newton-Puiseux algorithm 6 / 16

  12. Rational Newton-Puiseux algorithm D. Duval 1989, Rational Puiseux Expansions For each edge ∆ of N ( F ) s φ M k � – φ ∆ = k k = 1 l q – For each φ k F ( X , Y ) ← F ( ξ v k X q , X m ( ξ u k + Y )) ∆ , slope − m q X l with 0 i 0 I ( F ) · ξ k s. t. φ k ( ξ k ) = 0, · ( u , v ) such that uq − vm = 1. adrien.poteaux@lifl.fr Newton-Puiseux algorithm 7 / 16

  13. Rational Newton-Puiseux algorithm : first turn For each edge ∆ of N 0 ( F ) s φ M k � – φ ∆ = k k = 1 – For each φ k F ( X , Y ) ← F ( ξ v k X q , X m ( ξ u k + Y )) X l with ∆ , slope − m · ξ k s. t. φ k ( ξ k ) = 0, q i 0 d Y · ( u , v ) such that uq − vm = 1. l q First turn: initial polygon N 0 ( F ) adrien.poteaux@lifl.fr Newton-Puiseux algorithm 7 / 16

  14. Pure symbolic computation is costly H ( X , Y ) = ( Y 3 − X ) (( Y − 1 ) 2 − X ) ( Y − 2 − X 2 ) + X 2 Y 5 R H ( X ) = X 3 P ( X ) , deg X ( P ) = 23; β s.t. P ( β ) = 0 Singular parts of Puiseux series of H above β : S i ( X ) = α i , 0 , 1 ≤ i ≤ 4. 1 2 , 5 ≤ i ≤ 6. S i ( X ) = α i , 0 + α i , 1 ( X − β ) Degree of the extension field i = 5 , 6: K ( α i , 0 ) = K ( α i , 1 ) = K ( β ) → extension of degree 23, i = 1 , . . . , 4: [ K ( α i , 0 ) : K ( β )] = 4 → extension of degree 92, Coefficient growth α i , 0 → rational number with 98 digits, α i , 1 → rational number with 132 digits. adrien.poteaux@lifl.fr Newton-Puiseux algorithm 8 / 16

  15. Numerical computations ? Direct computation: almost useless Guessing the structure ? two difficulties: Finding the correct Newton polygon Factorising “well” φ ∆ 4 x 2 − 2 . 0 x + 0 . 9999 ? = ( x − 0 . 99 )( x − 1 . 01 ) 2 ? ( x − 1 . ) 2 = 1 = ⇒ Multiplicity structure ? 0 2 4 7 = ⇒ Exact informations needed ! adrien.poteaux@lifl.fr Newton-Puiseux algorithm 9 / 16

  16. A symbolic-numeric approach: 1 Compute the singular part of Puiseux series modulo a well chosen prime number p This give us the structure of the Puiseux series, thus: Newton polygons, Multiplicity structures of the φ ∆ . 2 Use this information to conduct a numerical computation of the Puiseux series coefficients. adrien.poteaux@lifl.fr A modular-numeric approach 10 / 16

  17. Modular part: main results Reduction criteria: One can reduce F mod p , 1 p > d Y 2 tc ( R F ) �≡ 0 mod p . 3 If p satisfies that: Puiseux series can be reduced modulo p , 1 The structure computed modulo p is the good one. 2 Bounds for p ; log ( p ) ≃ log ( D ) with probabilistic algorithms. References for details: Poteaux & Rybowicz 2008, On the good reduction of Puiseux series and complexity of the Newton-Puiseux algorithm over finite fields ; Poteaux & Rybowicz 2012, On the good reduction of Puiseux series and Applications ; Poteaux & Rybowicz 2011, Complexity bounds for the rational Newton-Puiseux algorithm over finite fields and related problems adrien.poteaux@lifl.fr A modular-numeric approach 11 / 16

  18. Numerical part: following the structure If P ( X ) = ( X − α ) m ( X − β ) m = ( X − ˜ γ ) m ( X − ˜ δ ) m , γ or α ↔ ˜ α ↔ ˜ δ ? no answer = ⇒ group of roots dealt together We separate the blocs later on: filter according to the Newton polygon 1 (coefficient of F zero or not) filter according to the multiplicity structure 2 first idea = approximate gcd : singular values One example adrien.poteaux@lifl.fr A modular-numeric approach 12 / 16

  19. Fast computation ? 1 Use only “mandatory” monomials Truncating power of X 1 already used in the D 8 of Duval, improved in our D 5 version, better ? → relaxed computations ( a-posteriori bounds) Reducing the degree in Y 2 After first turn, we only look roots above ( 0 , 0 ) Get rid of roots above ( 0 , α � = 0 ) ? Factorization 2 Fast computation in between two branch separations S ( X ) = 2 + X − X 2 + X 3 + 3 X 2 + 4 X 4 − X 2 − 2 X 5 + X 7 9 11 35 2 + 7 X 6 + . . . adrien.poteaux@lifl.fr A fast algorithm 13 / 16

  20. A new algorithm 1 Substitutions F ( X , Y ) ← F ( X , Y + A d Y − 1 ( X )) ( compute common terms at once ; less recursive calls) 2 Factorization of the polynomial during the algorithm ( Hensel lemma → recursive calls with smaller degrees) 3 Using relax algorithms. ( no a priori bound required) 4 Improved truncation bounds (thanks to relax algorithms). leads to O ˜( D 4 ) adrien.poteaux@lifl.fr A fast algorithm 14 / 16

  21. Better again ? The idea: all series do not need the same truncations 1 Compute half of the series in O ˜( D 3 ) (the one that requires the smallest truncations) 2 Factorize F = G H with G corresponding to the computed series, and H to the other ones. O ˜( D 3 ) ? 3 Apply the same procedure to H . Logarithmic number of recursive call: total complexity in O ˜( D 3 ) . Remaining problem: step 2 ; how to get the starting point in order to apply Hensel lemma ? or another idea ? adrien.poteaux@lifl.fr A fast algorithm 15 / 16

  22. Conclusion A modular-numerical approach Modular part: 100% done, Numerical part: first strategy developped, Maple implementation (prototype) To be done: certified computations, error bounds, better implementation. . . A new faster algorithm D 4 strategy looks to work, Missing one idea for the D 3 algorithm, C++ implementation (based on NTL) started, To be done: finding this last missing part, writting and coding everything properly. Long term: a good effective way to compute Abel’s map ? adrien.poteaux@lifl.fr A fast algorithm 16 / 16

  23. Annexes adrien.poteaux@lifl.fr A fast algorithm 16 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend