computing low degree factors of lacunary polynomials a
play

Computing low-degree factors of lacunary polynomials: a - PowerPoint PPT Presentation

Computing low-degree factors of lacunary polynomials: a Newton-Puiseux Approach Bruno Grenet LIRMM Universit e Montpellier 2 JNCF November 3., 2014 Classical factorization algorithms Factorization of a polynomial f Find f 1 , . . . ,


  1. Computing low-degree factors of lacunary polynomials: a Newton-Puiseux Approach Bruno Grenet LIRMM — Universit´ e Montpellier 2 JNCF — November 3., 2014

  2. Classical factorization algorithms Factorization of a polynomial f Find f 1 , . . . , f t , irreducible, s.t. f = f 1 × · · · × f t . Bruno Grenet – Computing low-degree factors of lacunary polynomials 2 / 18 �

  3. Classical factorization algorithms Factorization of a polynomial f Find f 1 , . . . , f t , irreducible, s.t. f = f 1 × · · · × f t . ◮ Many algorithms • over Z , Q , Q ( α ) , Q , Q p , F q , R , C , . . . ; • in 1 , 2 , . . . , n variables. ◮ Complexity: polynomial in deg ( f ) Bruno Grenet – Computing low-degree factors of lacunary polynomials 2 / 18 �

  4. Classical factorization algorithms Factorization of a polynomial f Find f 1 , . . . , f t , irreducible, s.t. f = f 1 × · · · × f t . ◮ Many algorithms • over Z , Q , Q ( α ) , Q , Q p , F q , R , C , . . . ; • in 1 , 2 , . . . , n variables. ◮ Complexity: polynomial in deg ( f ) X 102 Y 101 + X 101 Y 102 − X 101 Y 101 − X − Y + 1 = ( X + Y − 1 ) × ( X 101 Y 101 − 1 ) Bruno Grenet – Computing low-degree factors of lacunary polynomials 2 / 18 �

  5. Classical factorization algorithms Factorization of a polynomial f Find f 1 , . . . , f t , irreducible, s.t. f = f 1 × · · · × f t . ◮ Many algorithms • over Z , Q , Q ( α ) , Q , Q p , F q , R , C , . . . ; • in 1 , 2 , . . . , n variables. ◮ Complexity: polynomial in deg ( f ) X 102 Y 101 + X 101 Y 102 − X 101 Y 101 − X − Y + 1 = ( X + Y − 1 ) × ( X 101 Y 101 − 1 ) = ( X + Y − 1 ) × ( XY − 1 ) × ( 1 + XY + · · · + X 100 Y 100 ) Bruno Grenet – Computing low-degree factors of lacunary polynomials 2 / 18 �

  6. Lacunary factorization algorithms Definition k � c j X α 1j · · · X α nj f ( X 1 , . . . , X n ) = n 1 j = 1 � � ◮ size ( f ) ≃ k max j ( size ( c j )) + n log ( deg f ) Bruno Grenet – Computing low-degree factors of lacunary polynomials 3 / 18 �

  7. Lacunary factorization algorithms Definition k � c j X α 1j · · · X α nj f ( X 1 , . . . , X n ) = n 1 j = 1 � � ◮ size ( f ) ≃ k max j ( size ( c j )) + n log ( deg f ) Theorems There exist deterministic polynomial-time algorithms computing ◮ linear factors (integer roots) of f ∈ Z [ X ] ; [Cucker-Koiran-Smale’98] ◮ low-degree factors of f ∈ Q ( α )[ X ] ; [H. Lenstra’99] ◮ low-degree factors of f ∈ Q ( α )[ X 1 , . . . , X n ] . [Kaltofen-Koiran’06] Bruno Grenet – Computing low-degree factors of lacunary polynomials 3 / 18 �

  8. Lacunary factorization algorithms Definition k � c j X α 1j · · · X α nj f ( X 1 , . . . , X n ) = n 1 j = 1 � � ◮ size ( f ) ≃ k max j ( size ( c j )) + n log ( deg f ) Theorems There exist deterministic polynomial-time algorithms computing ◮ linear factors (integer roots) of f ∈ Z [ X ] ; [Cucker-Koiran-Smale’98] ◮ low-degree factors of f ∈ Q ( α )[ X ] ; [H. Lenstra’99] ◮ low-degree factors of f ∈ Q ( α )[ X 1 , . . . , X n ] . [Kaltofen-Koiran’06] It is NP -hard to compute roots of f ∈ F p [ X ] . [Bi-Cheng-Rojas’13] Bruno Grenet – Computing low-degree factors of lacunary polynomials 3 / 18 �

  9. Main result Let K be any field of characteristic 0 . Theorem The computation of the degree- d factors of f ∈ K [ X 1 , . . . , X n ] reduces to ◮ univariate lacunary factorizations plus post-processing, and ◮ multivariate low-degree factorization, in poly ( size ( f ) , d ) bit operations. Bruno Grenet – Computing low-degree factors of lacunary polynomials 4 / 18 �

  10. Main result Let K be any field of characteristic 0 . Theorem The computation of the degree- d factors of f ∈ K [ X 1 , . . . , X n ] reduces to ◮ univariate lacunary factorizations plus post-processing, and ◮ multivariate low-degree factorization, in poly ( size ( f ) , d ) bit operations. ◮ New algorithm for K = Q ( α ) ; some factors for K = Q , R , C , Q p Bruno Grenet – Computing low-degree factors of lacunary polynomials 4 / 18 �

  11. Main result Let K be any field of characteristic 0 . Theorem The computation of the degree- d factors of f ∈ K [ X 1 , . . . , X n ] reduces to ◮ univariate lacunary factorizations plus post-processing, and ◮ multivariate low-degree factorization, in poly ( size ( f ) , d ) bit operations. ◮ New algorithm for K = Q ( α ) ; some factors for K = Q , R , C , Q p ◮ Case d = 1 [G.-Chattopadhyay-Koiran-Portier-Strozecki’13] Bruno Grenet – Computing low-degree factors of lacunary polynomials 4 / 18 �

  12. Two kinds of factors Definition A polynomial g = � j b j X γ j Y δ j is ( p, q ) -homogeneous of order ω if pγ j + qδ j = ω for all j . Otherwise, g is said inhomogeneous . Bruno Grenet – Computing low-degree factors of lacunary polynomials 5 / 18 �

  13. Two kinds of factors Definition A polynomial g = � j b j X γ j Y δ j is ( p, q ) -homogeneous of order ω if pγ j + qδ j = ω for all j . Otherwise, g is said inhomogeneous . Y 6 • 5 • • 4 • • • 3 • • 2 1 • 0 1 2 3 4 5 6 7 X Univariate lacunary factorization Bruno Grenet – Computing low-degree factors of lacunary polynomials 5 / 18 �

  14. Two kinds of factors Definition A polynomial g = � j b j X γ j Y δ j is ( p, q ) -homogeneous of order ω if pγ j + qδ j = ω for all j . Otherwise, g is said inhomogeneous . Y Y • 6 6 • • • 5 5 • • • • 4 4 • • • • • • 3 3 • • • • 2 2 • 1 1 • • 0 1 2 3 4 5 6 7 X 0 1 2 3 4 5 6 7 X Univariate lacunary factorization Multivariate low-degree factorization Bruno Grenet – Computing low-degree factors of lacunary polynomials 5 / 18 �

  15. Weighted-homogeneous factors Y 6 • 5 • • 4 • • • 3 • • 2 1 • 0 1 2 3 4 5 6 7 X Bruno Grenet – Computing low-degree factors of lacunary polynomials 6 / 18 �

  16. Weighted-homogeneous factors Y 6 Reduction to the univariate case • 5 • • 4 If f , g are ( p, q ) -homogeneous, • • • 3 g divides f ⇐ ⇒ • • 2 g ( X 1/q , 1 ) divides f ( X 1/q , 1 ) 1 • 0 1 2 3 4 5 6 7 X Bruno Grenet – Computing low-degree factors of lacunary polynomials 6 / 18 �

  17. Weighted-homogeneous factors Y 6 Reduction to the univariate case • 5 • • 4 If f , g are ( p, q ) -homogeneous, • • • 3 g divides f ⇐ ⇒ • • 2 g ( X 1/q , 1 ) divides f ( X 1/q , 1 ) 1 • 0 1 2 3 4 5 6 7 X For all possible pairs ( p, q ) : 1. Write f = f 1 + · · · + f s as a sum of ( p, q ) -hom. polynomials; 2. Compute the common degree- d factors of the f t ( X 1/q , 1 ) ’s; � univariate lacunary factorization (number fields) 3. Return Y p deg ( g ) g ( X q /Y p ) for each factor g . Bruno Grenet – Computing low-degree factors of lacunary polynomials 6 / 18 �

  18. The multivariate case ◮ Weighted-homogeneous factors � Unidimensional factors : g ∈ K [ Z ] s.t. g ( X 1 , . . . , X n ) = X γ g ( X δ ) ∃ ˜ Bruno Grenet – Computing low-degree factors of lacunary polynomials 7 / 18 �

  19. The multivariate case ◮ Weighted-homogeneous factors � Unidimensional factors : g ∈ K [ Z ] s.t. g ( X 1 , . . . , X n ) = X γ g ( X δ ) ∃ ˜ For all pairs of monomials ( X α 1 , X α 2 ) : 1. Write f = f 1 + · · · + f s as a sum of unidimensional polynomials; 2. Compute the degree- d factors of the ˜ f t ’s; � univariate lacunary factorization 3. Return X γ g ( X δ ) for each factor g . Bruno Grenet – Computing low-degree factors of lacunary polynomials 7 / 18 �

  20. Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki’13] Observation ( Y − uX − v ) divides f ( X, Y ) ⇐ ⇒ f ( X, uX + v ) ≡ 0 Bruno Grenet – Computing low-degree factors of lacunary polynomials 8 / 18 �

  21. Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki’13] Observation ( Y − uX − v ) divides f ( X, Y ) ⇐ ⇒ f ( X, uX + v ) ≡ 0 Theorem   ℓ � ℓ � � c j X α j ( uX + v ) β j  � α 1 + if nonzero and uv � = 0 . val  2 j = 1 Bruno Grenet – Computing low-degree factors of lacunary polynomials 8 / 18 �

  22. Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki’13] Observation ( Y − uX − v ) divides f ( X, Y ) ⇐ ⇒ f ( X, uX + v ) ≡ 0 Theorem   ℓ � ℓ � � c j X α j ( uX + v ) β j  � α 1 + if nonzero and uv � = 0 . val  2 j = 1 Gap Theorem � ℓ ( f 1 ) � Suppose that f = f 1 + f 2 with val X ( f 2 ) > val X ( f 1 )+ . Then 2 for all uv � = 0 , ( Y − uX − v ) divides f iff it divides both f 1 and f 2 . Bruno Grenet – Computing low-degree factors of lacunary polynomials 8 / 18 �

  23. Puiseux series Observation for low-degree factors g ( X, Y ) divides f ( X, Y ) ⇐ ⇒ f ( X, φ ( X )) ≡ 0 Bruno Grenet – Computing low-degree factors of lacunary polynomials 9 / 18 �

  24. Puiseux series Observation for low-degree factors g ( X, Y ) divides f ( X, Y ) ⇐ ⇒ f ( X, φ ( X )) ≡ 0 deg Y ( g ) � g ( X, Y ) = g 0 ( X ) ( Y − φ i ( X )) ∈ K ( X )[ Y ] i = 1 Bruno Grenet – Computing low-degree factors of lacunary polynomials 9 / 18 �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend