topology of positive zero sets of bivariate pentanomials
play

Topology of Positive Zero Sets of Bivariate Pentanomials Malachi - PowerPoint PPT Presentation

Topology of Positive Zero Sets of Bivariate Pentanomials Malachi Alexander 1 , Ashley De Luna 2 Christian McRoberts 3 1 California State University, Monterey Bay 2 California State Polytechnic University, Pomona 3 Morehouse College MSRI-UP 2017,


  1. Topology of Positive Zero Sets of Bivariate Pentanomials Malachi Alexander 1 , Ashley De Luna 2 Christian McRoberts 3 1 California State University, Monterey Bay 2 California State Polytechnic University, Pomona 3 Morehouse College MSRI-UP 2017, 08/04/2017

  2. Motivation 1876: Carl Gustav Axel Harnack investigated the number of connected components of real algebraic curves.

  3. Motivation 1876: Carl Gustav Axel Harnack investigated the number of connected components of real algebraic curves. 1900: David Hilbert posed his sixteenth problem about determining arrangements of algebraic curves.

  4. Motivation Previous work has shown, For n -variate ( n + 1 ) -nomials: OR

  5. Motivation Previous work has shown, For n -variate ( n + 1 ) -nomials: For n -variate ( n + 2 ) -nomials: OR OR

  6. Motivation Previous work has shown, For n -variate ( n + 1 ) -nomials: For n -variate ( n + 2 ) -nomials: OR OR Our work is on n -variate ( n + 3 ) -nomials, We focus on the first unknown case: bivariate pentanomials!

  7. Motivation Automate computing the topology of positive zero sets. Graph the A -discriminant curve of sparse polynomials.

  8. Motivation 3 4 2 1 5 6 12 7 8 11 10 9 Automate computing the topology of positive zero sets. Graph the A -discriminant curve of sparse polynomials. Observe number of connected components.

  9. Motivation Automate computing the topology of positive zero sets. Graph the A -discriminant curve of sparse polynomials. Observe number of connected components. Visualize the topology of the positive zero sets.

  10. Motivation Example 1: f ( x 1 , x 2 ) = x 100 x 100 + 1 + x 2001 + x 2011 − 10 x 2 1 x 2 1 2 1 2 2 1.2 0.2 1.0 0 0.8 -0.2 -0.4 0.6 -0.6 0.4 -0.8 -1 0.2 -1.2 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Trop + ( f ) Z + ( f )

  11. Motivation Example 2 : f ( x 1 , x 2 ) = 1 + x 1 + x 2 − 6 5 x 4 1 x 2 − 6 5 x 1 x 4 2 3.0 0.1 2.5 0 -0.1 2.0 -0.2 -0.3 1.5 -0.4 -0.5 1.0 -0.6 -0.7 0.5 -0.8 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Trop + ( f ) Z + ( f )

  12. Project Overview Step 1: Plot the A -Discriminant Variety Step 2: Compute Positive Tropical Variety Step 3: Find the Topology of Inner Chambers

  13. Step 1: Plot the A -Discriminant Variety A -Discriminant Variety Let A ∈ Z 2 × 5 , with columns a 1 , . . . , a 5 and x = ( x 1 , x 2 ) s.t. f ( x ) = c 1 x a 1 + c 2 x a 2 + c 3 x a 3 + c 4 x a 4 + c 5 x a 5 ∈ C [ x 1 , x 2 ] ∇ A := { [ c 1 · · · c 5 ] ∈ P 4 C | f ( x ) has a degenerate root in ( C \{ 0 } ) 2 } [ c 1 , . . . , c 5 ] ∈ ∇ A [ c 1 , . . . , c 5 ] �∈ ∇ A

  14. Step 1: Plot the A -Discriminant Variety ∇ A has simple ( C \{ 0 } ) 2 -fibers over a two-dimensional base.

  15. Step 1: Plot the A -Discriminant Variety ∇ A has simple ( C \{ 0 } ) 2 -fibers over a two-dimensional base. We take a two-dimensional slice to get the reduced A -discriminant variety.

  16. Step 1: Plot the A -Discriminant Variety Given any polynomial f with x = ( x 1 , x 2 ) , a i = ( a 1 i , a 2 i ) , f ( x ) = c 1 x a 1 + c 2 x a 2 + c 3 x a 3 + c 4 x a 4 + c 5 x a 5

  17. Step 1: Plot the A -Discriminant Variety Given any polynomial f with x = ( x 1 , x 2 ) , a i = ( a 1 i , a 2 i ) , f ( x ) = c 1 x a 1 + c 2 x a 2 + c 3 x a 3 + c 4 x a 4 + c 5 x a 5 � � � 2 � 1 − 1 5 4 9 1 5 8 4 A = A = 4 2 3 1 4 2 8 8 4 1

  18. Step 1: Plot the A -Discriminant Variety f ( x 1 , x 2 ) = 10 x 2 1 x 2 2 − 8 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2

  19. Step 1: Plot the A -Discriminant Variety f ( x 1 , x 2 ) = 10 x 2 1 x 2 2 − 8 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2 � 2 � 1 5 8 4 A = 2 8 8 4 1

  20. Step 1: Plot the A -Discriminant Variety f ( x 1 , x 2 ) = 10 x 2 1 x 2 2 − 8 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2 � 2 � 1 5 8 4 A = 2 8 8 4 1   1 1 1 1 1 ˆ A = 2 1 5 8 4   2 8 8 4 1

  21. Step 1: Plot the A -Discriminant Variety f ( x 1 , x 2 ) = 10 x 2 1 x 2 2 − 8 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2 � 2 � 1 5 8 4 A = 2 8 8 4 1   1 1 1 1 1 ˆ A = 2 1 5 8 4   2 8 8 4 1 We define B to be the right null space of ˆ A : ˆ A B = O where O is the zero vector.

  22. θ π 0 Step 1: Plot the A -Discriminant Variety Use the Horn-Kapranov Uniformization .

  23. θ π 0 Step 1: Plot the A -Discriminant Variety Use the Horn-Kapranov Uniformization . ϕ A ( λ ) := ( Log | λ B T | ) B

  24. θ π 0 Step 1: Plot the A -Discriminant Variety Use the Horn-Kapranov Uniformization . ϕ A ( λ ) := ( Log | λ B T | ) B λ = ( λ 1 , λ 2 ) λ = ( sin ( θ ) , cos ( θ ))

  25. Step 1: Plot the A -Discriminant Variety Use the Horn-Kapranov Uniformization . ϕ A ( λ ) := ( Log | λ B T | ) B λ = ( λ 1 , λ 2 ) λ = ( sin ( θ ) , cos ( θ )) θ π 0 0 ≤ θ < π

  26. Step 1: Plot the A -Discriminant Variety f ( x 1 , x 2 ) = 10 x 2 1 x 2 2 − 8 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2

  27. Project Overview Step 1: Plot the A -Discriminant Variety Step 2: Compute Positive Tropical Variety Step 3: Find the Topology of Inner Chambers

  28. Step 2: Compute the Positive Tropical Variety Theorem 1. If f ∈ R [ x 1 , x 2 ] has coefficient vector c and Log | c | B lying in an outer chamber, then Z + ( f ) and Trop + ( f ) are isotopic.

  29. Step 2: Compute the Positive Tropical Variety Theorem 1. If f ∈ R [ x 1 , x 2 ] has coefficient vector c and Log | c | B lying in an outer chamber, then Z + ( f ) and Trop + ( f ) are isotopic. f ( x 1 , x 2 ) = 10 x 2 1 x 2 2 − 8 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2 � � c f = 10 − 8 − 11 8 3 g ( x 1 , x 2 ) = 2 x 2 1 x 2 2 − 5 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2 � � c g = 2 − 5 − 11 8 3 h ( x 1 , x 2 ) = 11 x 2 1 x 2 2 − 8 x 1 x 8 2 − 10 x 5 1 x 8 2 + 7 x 8 1 x 4 2 + 2 x 4 1 x 2 � � c h = 11 − 8 − 10 7 2

  30. Step 2: Compute the Positive Tropical Variety 50 40 30 20 10 Log | c | B = ( α, β ) 0 -10 -20 -30 -40 -50 -50 -40 -30 -20 -10 0 10 20 30 40 50

  31. Step 2: Compute the Positive Tropical Variety 50 40 30 20 10 Log | c | B = ( α, β ) 0 f ( x 1 , x 2 ) -10 -20 -30 -40 -50 -50 -40 -30 -20 -10 0 10 20 30 40 50

  32. Step 2: Compute the Positive Tropical Variety 50 40 30 20 10 Log | c | B = ( α, β ) 0 f ( x 1 , x 2 ) -10 g ( x 1 , x 2 ) -20 -30 -40 -50 -50 -40 -30 -20 -10 0 10 20 30 40 50

  33. Step 2: Compute the Positive Tropical Variety 50 40 30 20 10 Log | c | B = ( α, β ) 0 f ( x 1 , x 2 ) -10 g ( x 1 , x 2 ) -20 h ( x 1 , x 2 ) -30 -40 -50 -50 -40 -30 -20 -10 0 10 20 30 40 50

  34. Step 2: Compute the Positive Tropical Variety Theorem 1. If f ∈ R [ x 1 , x 2 ] has coefficient vector c and Log | c | B lying in an outer chamber, then Z + ( f ) and Trop + ( f ) are isotopic. f ( x 1 , x 2 ) = 10 x 2 1 x 2 2 − 8 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2 � � c f = 10 − 8 − 11 8 3 g ( x 1 , x 2 ) = 2 x 2 1 x 2 2 − 5 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2 � � c g = 2 − 5 − 11 8 3 h ( x 1 , x 2 ) = 11 x 2 1 x 2 2 − 8 x 1 x 8 2 − 10 x 5 1 x 8 2 + 7 x 8 1 x 4 2 + 2 x 4 1 x 2 � � c h = 11 − 8 − 10 7 2

  35. Step 2: Compute the Positive Tropical Variety Isotopy : Given two sets X , Y ∈ R 2 , a homeomorphism ι : [ 0 , 1 ] × R 2 → R 2 is an isotopy if ι is a continuous map such that ι ( 0 , X ) = X and ι ( 1 , X ) = Y

  36. Step 2: Compute the Positive Tropical Variety Isotopy : Given two sets X , Y ∈ R 2 , a homeomorphism ι : [ 0 , 1 ] × R 2 → R 2 is an isotopy if ι is a continuous map such that ι ( 0 , X ) = X and ι ( 1 , X ) = Y

  37. Step 2: Compute the Positive Tropical Variety Theorem 1. If f ∈ R [ x 1 , x 2 ] has coefficient vector c and Log | c | B lying in an outer chamber, then Z + ( f ) and Trop + ( f ) are isotopic. f ( x 1 , x 2 ) = 10 x 2 1 x 2 2 − 8 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2 � � c f = 10 − 8 − 11 8 3 g ( x 1 , x 2 ) = 2 x 2 1 x 2 2 − 5 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2 � � c g = 2 − 5 − 11 8 3 h ( x 1 , x 2 ) = 11 x 2 1 x 2 2 − 8 x 1 x 8 2 − 10 x 5 1 x 8 2 + 7 x 8 1 x 4 2 + 2 x 4 1 x 2 � � c h = 11 − 8 − 10 7 2

  38. Step 2: Compute the Positive Tropical Variety f ( x 1 , x 2 ) = 10 x 2 1 x 2 2 − 8 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2

  39. Step 2: Compute the Positive Tropical Variety f ( x 1 , x 2 ) = 10 x 2 1 x 2 2 − 8 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2 � 2 � 1 5 8 4 A = 2 8 8 4 1 � � c = 10 − 8 − 11 8 3

  40. Step 2: Compute the Positive Tropical Variety f ( x 1 , x 2 ) = 10 x 2 1 x 2 2 − 8 x 1 x 8 2 − 11 x 5 1 x 8 2 + 8 x 8 1 x 4 2 + 3 x 4 1 x 2 � 2 � 1 5 8 4 A = 2 8 8 4 1 � � c = 10 − 8 − 11 8 3 Newt ( f ) := Conv ( { a i } ) 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend