tobias g ocke yo
play

Tobias G ocke yo 2. A Together with C. S. Fischer (JLU) and R. - PowerPoint PPT Presentation

Bad Honnef 2012 Hadronic con- tribution to the 1. Intro- 4. Summary muon g 2 from duction and Outlook a Dyson-Schwinger perspective Tobias G ocke yo 2. A Together with C. S. Fischer (JLU) and R. Williams (Complutense, Madrid)


  1. Bad Honnef 2012 Hadronic con- tribution to the 1. Intro- 4. Summary muon g − 2 from duction and Outlook a Dyson-Schwinger perspective Tobias G¨ ocke yo 2. A Together with C. S. Fischer (JLU) and R. Williams (Complutense, Madrid) Functional 3. Results yo Approach [Fischer, TG, Williams, arXiv:1009.5297] yo [TG, Fischer, Williams, arXiv:1012.3886] yo [TG, Fischer, Williams, arXiv:1107.2588] JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 1 / 17

  2. Hadronic con- tribution to the 1. Intro- 4. Summary muon g − 2 from duction and Outlook a Dyson-Schwinger perspective 2. A Functional 3. Results Approach

  3. Hadronic con- tribution to the 1. Intro- 4. Summary muon g − 2 from duction and Outlook a Dyson-Schwinger perspective 2. A Functional 3. Results Approach

  4. 1. Introduction a µ is. . . Precisely determined by experiment and accurately predicted by Standard Model Precision test for the Standard Model More sensitive to contributions from high scales than a e since : m µ ≫ m e Sensitive to QCD and potential ’new physics’ contributions Deviation between experiment and theory? So one has to . . . get the SM predictions under control use non-perturbative methods for QCD-contributions. Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 4 / 17

  5. 1. Introduction Magnetic moment � µ , g -factor µ = g e � � S 2 m Dirac equation: g = 2 Schwinger: anomalous part a µ = g − 2 ≈ α/ 2 π ≈ 0 . 00116 2 Relativistic QFT � F 1 ( q 2 ) γ α + iF 2 ( q 2 ) σ αβ q β � = ( − ie )¯ u ( p ′ ) u ( p ) 2 m µ a µ := F 2 (0) = g µ − 2 2 Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 5 / 17

  6. 1. Introduction Precision tests of the standard model a µ [10 − 11 ] contribution Experiment 116 592 089(63) SM 116 591 828(49) hadronic LO 6 949(43) hadronic LbL 105(26) exp. - th. 261(80) [B. L. Roberts, arXiv:1001.2898 (2010)] [Hagiwara, Liao, Martin, Nomura, Teubner, arXiv:1105.3149 (2011)] New Physics? 3.3 σ effect Lattice? First results but needs time Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 6 / 17

  7. 1. Introduction Precision tests of the standard model a µ [10 − 11 ] contribution Experiment 116 592 089(63) SM 116 591 828(49) hadronic LO 6 949(43) hadronic LbL 105(26) exp. - th. 261(80) [B. L. Roberts, arXiv:1001.2898 (2010)] [Hagiwara, Liao, Martin, Nomura, Teubner, arXiv:1105.3149 (2011)] New Physics? 3.3 σ effect Lattice? First results but needs time Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 6 / 17

  8. 1. Introduction Two Hadronic Contributions hadronic vacuum polarization hadr. light by light scattering one-scale problem two-scale problem known from dispersion only accessible through relation theory leading contribution systematic uncertainty? How to deal with these objects? − → calculate both from the same approach use the ’little brother’ as test case Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 7 / 17

  9. Hadronic con- tribution to the 1. Intro- 4. Summary muon g − 2 from duction and Outlook a Dyson-Schwinger perspective 2. A Functional 3. Results Approach

  10. 2. A Functional Approach - Overview Diagrammatic representation = = + q Model of quark-gluon interaction: [Maris and Roberts, arXiv:nucl-th/9708029] [Maris and Tandy, arXiv:nucl-th/9905056] [Maris and Tandy, arXiv:nucl-th/9910033] one description for high and low energy → important for two-scale problem building blocks Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 9 / 17

  11. Hadronic con- tribution to the 1. Intro- 4. Summary muon g − 2 from duction and Outlook a Dyson-Schwinger perspective 2. A Functional 3. Results Approach

  12. 3. Results - Hadronic Vacuum Polarization δ µν q 2 − q µ q ν � � Π( q 2 ) = Π µν ( q ) = Adler function: D ( q ) = − d Π / d ln q 2 two parameter sets, u and d quark masses fixed to the I:pion mass II: rho mass use u, d, s, c, b quarks (isospin-limit: m u = m d ) all parameters fixed by meson phenomenology ◮ model interaction → � ¯ ψψ � and f π ◮ m u / d → m π or m ρ ◮ m s → m K or m φ c and b ¯ ◮ m c / b → c ¯ b vector states Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 11 / 17

  13. 3. Results - Hadronic Vacuum Polarization δ µν q 2 − q µ q ν � � Π( q 2 ) = Π µν ( q ) = Adler function: D ( q ) = − d Π / d ln q 2 two parameter sets, u and d quark masses fixed to the I:pion mass II: rho mass use u, d, s, c, b quarks (isospin-limit: m u = m d ) all parameters fixed by meson phenomenology ◮ model interaction → � ¯ ψψ � and f π ◮ m u / d → m π or m ρ ◮ m s → m K or m φ c and b ¯ ◮ m c / b → c ¯ b vector states Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 11 / 17

  14. 3. Results - Hadronic Vacuum Polarization δ µν q 2 − q µ q ν � � Π( q 2 ) = Π µν ( q ) = Adler function: D ( q ) = − d Π / d ln q 2 two parameter sets, u and d quark masses fixed to the I:pion mass II: rho mass use u, d, s, c, b quarks (isospin-limit: m u = m d ) all parameters fixed by meson phenomenology ◮ model interaction → � ¯ ψψ � and f π ◮ m u / d → m π or m ρ ◮ m s → m K or m φ c and b ¯ ◮ m c / b → c ¯ b vector states Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 11 / 17

  15. 3. Results - Hadronic Vacuum Polarization δ µν q 2 − q µ q ν � � Π( q 2 ) = Π µν ( q ) = Adler function: D ( q ) = − d Π / d ln q 2 two parameter sets, u and d quark masses fixed to the I:pion mass II: rho mass use u, d, s, c, b quarks (isospin-limit: m u = m d ) all parameters fixed by meson phenomenology ◮ model interaction → � ¯ ψψ � and f π ◮ m u / d → m π or m ρ ◮ m s → m K or m φ c and b ¯ ◮ m c / b → c ¯ b vector states Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 11 / 17

  16. 3. Results - Hadronic Vacuum Polarisation Adler function D(Q) 0.03 0.02 0.01 dispersion relation DSE 0 0 2 4 6 8 10 Q [GeV] = (6760 − 7440) × 10 − 11 | a HVP , disp . rel . a HVP , DSE = 6903 . 0(52 . 6) × 10 − 11 µ µ [TG, Fischer, Williams, arXiv:1107.2588 (2011)] [Jegerlehner and Nyffeler ,arXiv:0902.3360 (2009)] Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 12 / 17

  17. 3. Results - LbL - π , η , η ′ Pole pseudoscalar (PS) exchance π only a π − pole = 58(7) × 10 − 11 µ π , η and η ′ a PS − pole = 80 . 7(12) × 10 − 11 µ [Fischer, TG, Williams, arXiv:1009.5297] [TG, Fischer, Williams, arXiv:1012.3886] good agreement with existing approaches Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 13 / 17

  18. 3. Results - LbL - Quark Loop quark loop bare vertex γ µ a LBL , bare = 61(2) × 10 − 11 µ γ µ with 1st Ball-Chiu dressing a LBL , 1 BC = 107(2) × 10 − 11 µ Only ’full’ self-consistent vertex from BSE will be conclusive → numerically quite challenging [Fischer, TG, Williams, arXiv:1009.5297] [TG, Fischer, Williams, arXiv:1012.3886] enhancement compared to existing approaches Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 14 / 17

  19. Hadronic con- tribution to the 1. Intro- 4. Summary muon g − 2 from duction and Outlook a Dyson-Schwinger perspective 2. A Functional 3. Results Approach

  20. 5. Summary and Outlook summary DSE calculation of g − 2 HVP ◮ a HVP , DSE = (6760 − 7440) × 10 − 11 µ ◮ a HVP , disp . rel . = 6949(43) × 10 − 11 µ ◮ Adler function can be described reasonably LbL ◮ a PS − pole = 81(12) × 10 − 11 µ ◮ enhancement of quark-loop overlooked? ◮ but no final answer yet [Hagiwara, Liao, Martin, Nomura, Teubner, arXiv:1105.3149 (2011)] Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 16 / 17

  21. 5. Summary and Outlook outlook complete quark-loop calculation overcome resonance expansion ( π 0 , η, η ′ ) pole dominance Thank You for the attention! supported by DFG under grant No. Fi 970/8-1 Helmholtz Young Investigator Grant No. VH-NG-332 Helmholtz International Center for FAIR within the LOEWE program of the State of Hesse Science Fund FWF under Project No. P20592-N16 Ministerio de Educaci´ on (Spain): Programa Nacional de Movilidad de Recursos Humanos del, Plan Nacional de I-D+i 2008-2011 Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 17 / 17

  22. 5. Summary and Outlook outlook complete quark-loop calculation overcome resonance expansion ( π 0 , η, η ′ ) pole dominance Thank You for the attention! supported by DFG under grant No. Fi 970/8-1 Helmholtz Young Investigator Grant No. VH-NG-332 Helmholtz International Center for FAIR within the LOEWE program of the State of Hesse Science Fund FWF under Project No. P20592-N16 Ministerio de Educaci´ on (Spain): Programa Nacional de Movilidad de Recursos Humanos del, Plan Nacional de I-D+i 2008-2011 Tobias G¨ ocke (JLU Gießen) Hadr. contr. to a µ from a DSE perspective 15.02.2012 17 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend