principal component analysis
play

Principal Component Analysis Proseminar Data Mining Tobias Holl 1 1 - PowerPoint PPT Presentation

. . . . . . . . . . . . . . Introduction Theory Applications Principal Component Analysis Proseminar Data Mining Tobias Holl 1 1 Technische Universitt Mnchen 2017-06-09 Tobias Holl Technische Universitt Mnchen . . .


  1. . . . . . . . . . . . . . . Introduction Theory Applications Principal Component Analysis Proseminar Data Mining Tobias Holl 1 1 Technische Universität München 2017-06-09 Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis

  2. . . . . . . . . . . . . . . . . Introduction Theory Applications The Problem Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis

  3. . . . . . . . . . . . . . . . Introduction Theory Applications The Problem Data. Lots of data. Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis

  4. . . . . . . . . . . . . . . . . Introduction Theory Applications An Example Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis Reference Energy Disaggregation Data Set [1] ▶ Power usage over >100 days for >200 devices ▶ Measured every 2s ▶ Over 500GB of compressed data

  5. . . . . . . . . . . . . . . . . Introduction Theory Applications An Example Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis Iris Data Set [2] ▶ 150 fmowers of 3 difgerent species ▶ Petal and sepal widths and lengths

  6. . . . . . . . . . . . . . . . Introduction Theory Applications An Example . Tobias Holl Technische Universität München . Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . 2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5 7.5 6.5 Sepal length 5.5 4.5 4.0 3.5 Sepal width 3.0 2.5 2.0 7 6 5 Petal length 4 3 2 1 2.5 2.0 1.5 Petal width 1.0 0.5 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 1 2 3 4 5 6 7

  7. . . . . . . . . . . . . . . . . Introduction Theory Applications An Example Tobias Holl Technische Universität München . . . . . . . . . . . . . Principal Component Analysis . . . . . . . . . . . 0.5 1.0 1.5 2.0 2.5 7 6 5 Petal length 4 3 2 1 2.5 2.0 1.5 Petal width 1.0 0.5 1 2 3 4 5 6 7

  8. . . . . . . . . . . . . . . . . Introduction Theory Applications An Example Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . Principal Component Analysis . . . . . 2.5 2.0 1.5 Petal width 1.0 0.5 1 2 3 4 5 6 7 Petal length

  9. . . . . . . . . . . . . . . . Introduction Theory Applications An Example Clear correlation Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . Principal Component Analysis . . . . . 2.5 2.0 1.5 Petal width 1.0 0.5 1 2 3 4 5 6 7 Petal length

  10. . . . . . . . . . . . . . . . Introduction Theory Applications An Example Unnecessary redundancy Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . Principal Component Analysis . . . . . 2.5 2.0 1.5 Petal width 1.0 0.5 1 2 3 4 5 6 7 Petal length

  11. . x 1 n . . . . . Introduction Theory Applications Data Matrices Variable 1 Variable n Measurement 1 x 11 . . . . . . . ... . . . Measurement m x m 1 x mn Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis ···   · · · X =  ∈ R m × n    · · ·

  12. . . . . . . Introduction Theory Applications Data Matrices Variable 1 Variable n Measurement 1 x 11 x 1 n . . . . . . ... . . . Measurement m x m 1 x mn Assume that X is centered around 0 . Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis ···   · · · X =  ∈ R m × n    · · ·

  13. . . . . . . . . . . . . . . . Introduction Theory Applications Some Statistics 1 a x b Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis cov ( x a , x b ) = m − 1 x T

  14. . . . . . . . . . . . . . . . Introduction Theory Applications Some Statistics 1 a x b Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis cov ( x a , x b ) = m − 1 x T cov ( x a , x b ) is the covariance of x a and x b .

  15. . . . . . . . . . . . . . . Introduction Theory Applications Some Statistics 1 a x b Covariance describes the strength of the correlation. Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis cov ( x a , x b ) = m − 1 x T cov ( x a , x b ) is the covariance of x a and x b .

  16. . Introduction . . . . . . . . . . Theory . Applications Some Statistics . . . ... . . . Tobias Holl Technische Universität München . . . . . . . . . . . . . . . Principal Component Analysis . . . . . . . . . . . . .   cov ( x 1 , x 1 ) · · · cov ( x 1 , x n ) cov ( X ) =     cov ( x 1 , x n ) cov ( x n , x n ) · · ·

  17. . Theory . . . . . . . . . . Introduction Applications . Some Statistics . . . ... . . . 1 Tobias Holl Technische Universität München . . . . . . . . . . . . . . . Principal Component Analysis . . . . . . . . . . . . .   cov ( x 1 , x 1 ) cov ( x 1 , x n ) · · · cov ( X ) =     cov ( x 1 , x n ) · · · cov ( x n , x n ) cov ( v , v ) = m − 1 v T v = var ( v )

  18. . Introduction . . . . . . . . . . Theory . Applications Some Statistics . . . ... . . . Tobias Holl Technische Universität München . . . . . . . . . . . . . . . Principal Component Analysis . . . . . . . . . . . . .   var ( x 1 ) · · · cov ( x 1 , x n ) cov ( X ) =     cov ( x 1 , x n ) var ( x n ) · · ·

  19. . Theory . . . . . . . . . . Introduction Applications . Some Statistics . . . ... . . . 1 Tobias Holl Technische Universität München . . . . . . . . . . . . . . . Principal Component Analysis . . . . . . . . . . . . .   var ( x 1 ) · · · cov ( x 1 , x n ) cov ( X ) =  =   m − 1 X T X  cov ( x 1 , x n ) var ( x n ) · · ·

  20. . . . . . . . . . . . . . . . Introduction Theory Applications What We Really Want Eliminate unnecessary redundancies Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis

  21. . . . . . . . . . . . . . . . Introduction Theory Applications What We Really Want Transform X into Y so that Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis cov ( y a , y b ) = 0 ∀ a ̸ = b

  22. . . . . . . . . . . . . . . . . Introduction Theory Applications What We Really Want Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis Transform X linearly into Y = XP so that cov ( y a , y b ) = 0 ∀ a ̸ = b

  23. . . . . . . . . . . . . . . Introduction Theory Applications What We Really Want 0 ... 0 Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis . . . . Transform X linearly into Y = XP so that   var ( y 1 ) cov ( Y ) =     var ( y n )

  24. . . . . . . . . . . . . . . Introduction Theory Applications Diagonalizing Matrices Theorem Every symmetric real matrix A has an eigenvalue decomposition eigenvalues of A , and V is orthonormal. The rows of V are the eigenvectors corresponding to the matching entry in D . Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis A = VDV T , where D is a diagonal matrix composed of the D = V T AV follows trivially.

  25. . . . . . . . . . . . . . . Introduction Theory Applications Diagonalizing Matrices Theorem Every symmetric real matrix A has an eigenvalue decomposition eigenvalues of A , and V is orthonormal. The rows of V are the eigenvectors corresponding to the matching entry in D . Tobias Holl Technische Universität München . . . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis A = VDV T , where D is a diagonal matrix composed of the D = V T AV follows trivially. cov ( Y ) = V T cov ( X ) V

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend