component selection
play

Component selection 1 (c) 2020 A.J.M. Montagne Component selection - PowerPoint PPT Presentation

Component selection 1 (c) 2020 A.J.M. Montagne Component selection + - + - + - 2 (c) 2020 A.J.M. Montagne Component selection - Noise: + - + - + - 3 (c) 2020 A.J.M. Montagne Component selection - Noise: + - + - + - 4


  1. Component selection 1 (c) 2020 A.J.M. Montagne

  2. Component selection + - + - + - 2 (c) 2020 A.J.M. Montagne

  3. Component selection - Noise: + - + - + - 3 (c) 2020 A.J.M. Montagne

  4. Component selection - Noise: + - + - + - 4 (c) 2020 A.J.M. Montagne

  5. Component selection - Noise: + - + - - Bandwidth: + - 5 (c) 2020 A.J.M. Montagne

  6. Component selection - Noise: + - + - - Bandwidth: - Accuracy: + - 6 (c) 2020 A.J.M. Montagne

  7. Component selection - Noise: + - + - - Bandwidth: - Accuracy: + - Drive capability: - 7 (c) 2020 A.J.M. Montagne

  8. Component selection - Noise: + - + - - Bandwidth: - Accuracy: + - Drive capability: - 8 (c) 2020 A.J.M. Montagne

  9. Component selection - Noise: + - + - - Bandwidth: - Accuracy: + - Drive capability: - 9 (c) 2020 A.J.M. Montagne

  10. Component selection - Noise: + - OPA211 + - - Bandwidth: 3.4nF - Accuracy: 600 + - Drive capability: - 10 (c) 2020 A.J.M. Montagne

  11. Component selection - Noise: + - OPA211 + - - Bandwidth: 3.4nF - Accuracy: 600 220 + - Drive capability: - 47uF 11 (c) 2020 A.J.M. Montagne

  12. Component selection - Noise: + - OPA211 + - - Bandwidth: 20k 3.4nF - Accuracy: 600 220 + - Drive capability: - 12 (c) 2020 A.J.M. Montagne

  13. Component selection - Noise: + - OPA211 + - - Bandwidth: 20k 3.4nF - Accuracy: 600 220 + - Drive capability: - 47uF 13 (c) 2020 A.J.M. Montagne

  14. Component selection - Noise: + - 20k OPA211 + - - Bandwidth: 20k 3.4nF - Accuracy: 600 220 + - Drive capability: - 47uF 14 (c) 2020 A.J.M. Montagne

  15. Component selection - Noise: + - 20k OPA211 + - - Bandwidth: 1uF 20k 3.4nF - Accuracy: 600 220 + - Drive capability: - 47uF 15 (c) 2020 A.J.M. Montagne

  16. Component selection - Noise: + - 1k 20k OPA211 + - - Bandwidth: 1uF 20k 3.4nF - Accuracy: 600 1k 220 + - Drive capability: - 47uF 16 (c) 2020 A.J.M. Montagne

  17. Component selection - Noise: + - 1k 20k OPA211 + - - Bandwidth: 1uF 20k 3.4nF - Accuracy: 600 1k 47uF 220 + - Drive capability: - 47uF 17 (c) 2020 A.J.M. Montagne

  18. Component selection - Noise: + - 1k 20k OPA211 + - - Bandwidth: 1uF 20k 3.4nF - Accuracy: 600 1k 47uF 220 + - Drive capability: - 47uF 18 (c) 2020 A.J.M. Montagne

  19. Modeling OpAmp 19 (c) 2020 A.J.M. Montagne

  20. Modeling OpAmp Small-signal dynamic behavior OPA211 20 (c) 2020 A.J.M. Montagne

  21. Modeling OpAmp Small-signal dynamic behavior OPA211 21 (c) 2020 A.J.M. Montagne

  22. Modeling OpAmp Small-signal dynamic behavior OPA211 8u 900n 1p + + 3.6k 60 0.7 20k 7.5p - - 1p A_0*(1+s/2/PI/40M)/(1+s/2/PI/120)/(1+2/2/PI/20M) 22 (c) 2020 A.J.M. Montagne

  23. Modeling OpAmp Small-signal dynamic behavior OPA211 8u 900n 1p + + 3.6k 60 0.7 20k 7.5p - - 1p A_0*(1+s/2/PI/40M)/(1+s/2/PI/120)/(1+2/2/PI/20M) .model OPA211_A0 OV + cd = 8p ; differential-mode input capacitance + gd = 50u ; differential-mode input conductance + cc = 2p ; common-mode input capacitance + av = {A_0*(1+s/2/PI/40M)/(1+s/2/PI/120)/(1+s/2/PI/20M)} ; voltage gain + zo = {3.6k/(1+s*3.6k*8u) + 0.7 + s*900n*60/(60+s*900n)} ; output impedance 23 (c) 2020 A.J.M. Montagne

  24. Modeling OpAmp SLiCAP noise and bias models 24 (c) 2020 A.J.M. Montagne

  25. Modeling OpAmp SLiCAP noise and bias models 25 (c) 2020 A.J.M. Montagne

  26. Modeling OpAmp SLiCAP noise and bias models SLiCAP O_dcvar nullor with o ff set and bias 26 (c) 2020 A.J.M. Montagne

  27. Modeling OpAmp SLiCAP noise and bias models SLiCAP O_dcvar nullor with o ff set and bias Standard deviation o ff set voltage 27 (c) 2020 A.J.M. Montagne

  28. Modeling OpAmp SLiCAP noise and bias models SLiCAP O_dcvar nullor with o ff set and bias Standard deviation o ff set voltage Standard deviation o ff set current 28 (c) 2020 A.J.M. Montagne

  29. Modeling OpAmp SLiCAP noise and bias models SLiCAP O_dcvar nullor with o ff set and bias Standard deviation o ff set voltage Standard deviation o ff set current Mean value bias current 29 (c) 2020 A.J.M. Montagne

  30. Modeling OpAmp SLiCAP noise and bias models SLiCAP O_dcvar nullor with o ff set and bias Standard deviation o ff set voltage Standard deviation o ff set current Mean value bias current Standard deviation bias current 30 (c) 2020 A.J.M. Montagne

  31. Modeling OpAmp SLiCAP noise and bias models SLiCAP O_dcvar nullor with o ff set and bias Standard deviation o ff set voltage Standard deviation o ff set current Mean value bias current Standard deviation bias current SLiCAP O_noise nullor with equivalent input noise sources 31 (c) 2020 A.J.M. Montagne

  32. Modeling OpAmp SLiCAP noise and bias models SLiCAP O_dcvar nullor with o ff set and bias Standard deviation o ff set voltage Standard deviation o ff set current Mean value bias current Standard deviation bias current SLiCAP O_noise nullor with equivalent input noise sources Spectral density noise voltage 32 (c) 2020 A.J.M. Montagne

  33. Modeling OpAmp SLiCAP noise and bias models SLiCAP O_dcvar nullor with o ff set and bias Standard deviation o ff set voltage Standard deviation o ff set current Mean value bias current Standard deviation bias current SLiCAP O_noise nullor with equivalent input noise sources Spectral density noise voltage Spectral density noise current 33 (c) 2020 A.J.M. Montagne

  34. Modeling OpAmp SLiCAP noise and bias models SLiCAP O_dcvar nullor with o ff set and bias Standard deviation o ff set voltage Standard deviation o ff set current Mean value bias current Standard deviation bias current SLiCAP O_noise nullor with equivalent input noise sources Spectral density noise voltage Spectral density noise current 34 (c) 2020 A.J.M. Montagne

  35. SLiCAP noise veri fi cation 35 (c) 2020 A.J.M. Montagne

  36. SLiCAP noise veri fi cation 36 (c) 2020 A.J.M. Montagne

  37. SLiCAP noise veri fi cation Noise fi gure 2.4dB over 1.57x500kHz bandwidth. 37 (c) 2020 A.J.M. Montagne

  38. SLiCAP noise veri fi cation Noise fi gure 2.4dB over 1.57x500kHz bandwidth. 38 (c) 2020 A.J.M. Montagne

  39. SLiCAP biasing veri fi cation 39 (c) 2020 A.J.M. Montagne

  40. SLiCAP biasing veri fi cation 40 (c) 2020 A.J.M. Montagne

  41. SLiCAP biasing veri fi cation All component tolerances 1% (3-sigma) 41 (c) 2020 A.J.M. Montagne

  42. SLiCAP biasing veri fi cation All component tolerances 1% (3-sigma) Standard deviation of the output voltage: 10mV 42 (c) 2020 A.J.M. Montagne

  43. SLiCAP biasing veri fi cation All component tolerances 1% (3-sigma) Standard deviation of the output voltage: 10mV 43 (c) 2020 A.J.M. Montagne

  44. Frequency response 44 (c) 2020 A.J.M. Montagne

  45. Frequency response 8u 900n 1p 600 + + + 3.6k 60 0.7 20k 7.5p 3.4n - - - 1p A_0*(1+s/2/PI/40M) (1+s/2/PI/120)(1+2/2/PI/20M) 20k 220 45 (c) 2020 A.J.M. Montagne

  46. Frequency response LRC series resonance at 2.88MHz 8u 900n 1p 600 + + + 3.4n 3.6k 60 0.7 20k 7.5p - - - 1p A_0*(1+s/2/PI/40M) (1+s/2/PI/120)(1+2/2/PI/20M) 20k 220 46 (c) 2020 A.J.M. Montagne

  47. Frequency response LRC series resonance at 2.88MHz 8u 900n 1p 600 + + + 3.4n 3.6k 60 0.7 20k 7.5p - - - 1p A_0*(1+s/2/PI/40M) (1+s/2/PI/120)(1+2/2/PI/20M) 20k 220 47 (c) 2020 A.J.M. Montagne

  48. Frequency response #10 6 Root Locus 3 2 1 LOOPGAIN Poles Imag [Hz] LOOPGAIN Zeros SERVO Poles:A 0 = 1.0e+00 0 SERVO Poles:A 0 = 6.7e+05 SERVO Poles:A 0 = 1.0e+00 .. 6.7e+05 -1 -2 -3 -6 -5 -4 -3 -2 -1 0 Real [Hz] #10 6 48 (c) 2020 A.J.M. Montagne

  49. Frequency response #10 6 Root Locus 3 2 dominant pole 1 LOOPGAIN Poles Imag [Hz] LOOPGAIN Zeros SERVO Poles:A 0 = 1.0e+00 0 SERVO Poles:A 0 = 6.7e+05 SERVO Poles:A 0 = 1.0e+00 .. 6.7e+05 -1 -2 -3 -6 -5 -4 -3 -2 -1 0 Real [Hz] #10 6 49 (c) 2020 A.J.M. Montagne

  50. Frequency response #10 6 Root Locus 3 2 dominant pole 1 LOOPGAIN Poles Imag [Hz] LOOPGAIN Zeros SERVO Poles:A 0 = 1.0e+00 0 SERVO Poles:A 0 = 6.7e+05 SERVO Poles:A 0 = 1.0e+00 .. 6.7e+05 -1 -2 -3 -6 -5 -4 -3 -2 -1 0 Real [Hz] #10 6 non-dominant pole too close to ignore 50 (c) 2020 A.J.M. Montagne

  51. Frequency response #10 6 Root Locus 3 2 dominant pole 1 LOOPGAIN Poles Imag [Hz] LOOPGAIN Zeros SERVO Poles:A 0 = 1.0e+00 0 SERVO Poles:A 0 = 6.7e+05 SERVO Poles:A 0 = 1.0e+00 .. 6.7e+05 -1 -2 -3 -6 -5 -4 -3 -2 -1 0 Real [Hz] #10 6 non-dominant pole too close to ignore 51 (c) 2020 A.J.M. Montagne

  52. Frequency response Uncompensated ampli fi er 52 (c) 2020 A.J.M. Montagne

  53. Frequency response Magnitude plots 100 50 magnitude [dB] 0 -50 -100 -150 10 2 10 3 10 4 10 5 10 6 10 7 Phase plots 200 100 Uncompensated ampli fi er phase [deg] 0 -100 ASYMPTOTIC LOOPGAIN SERVO -200 DIRECT GAIN -300 10 2 10 3 10 4 10 5 10 6 10 7 frequency [Hz] 53 (c) 2020 A.J.M. Montagne

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend