to wa r d s w e a k co u p l i n g i n h o lo g r a p h y
play

TO WA R D S W E A K CO U P L I N G I N H O LO G R A P H Y WO R K - PowerPoint PPT Presentation

S A O G R OZ DA N OV I N ST I T U U T- LO R E N TZ F O R T H E O R E T I CA L P H Y S I C S L E I D E N U N I V E R S I TY TO WA R D S W E A K CO U P L I N G I N H O LO G R A P H Y WO R K I N CO L L A B O R AT I O N W I T H J . CA S


  1. S A Š O G R OZ DA N OV I N ST I T U U T- LO R E N TZ F O R T H E O R E T I CA L P H Y S I C S L E I D E N U N I V E R S I TY TO WA R D S W E A K CO U P L I N G I N H O LO G R A P H Y WO R K I N CO L L A B O R AT I O N W I T H J . CA S A L D E R R E Y-S O L A N A , N . KA P L I S , N . P O OV U T T I K U L , A . STA R I N E T S A N D W. VA N D E R S C H E E OX F O R D, 6 . 3 . 2 0 1 7

  2. 2 O U T L I N E • from holography to experiment • coupling constant dependence and universality in hydrodynamics • thermalisation and higher-energy spectrum • heavy ion collisions • conclusion and future directions

  3. 3 F R O M H O LO G R A P H Y TO E X P E R I M E N T some strongly coupled field theories have a • dual gravitational description (AdS/CFT correspondence) Z [field theory] = Z [string theory] originally a duality in type IIB string theory • so far: universality at strong coupling • challenges • field content (no supersymmetry) • away from infinite N • away from infinite coupling • α 0 ∝ 1 / λ 1 / 2 λ ≡ g 2 Y M N

  4. 4 T WO C L A S S E S O F T H E O R I E S top-down dual of N=4 theory with ’t Hooft coupling corrections from • type IIB string theory ✓ ◆ 1 R − 1 1 Z d 10 x √− g 5 + γ e − 3 2 ( ∂φ ) 2 − 2 φ W + . . . 4 · 5! F 2 S IIB = 2 κ 2 10 α 0 /L 2 = λ � 1 / 2 γ = α 0 3 ζ (3) / 8 ρσδ + 1 W = C αβγδ C µ βγν C ρσ µ C ν 2 C αδβγ C µ νβγ C ρσ µ C ν α α ρσδ bottom-up curvature-squared theory with a special, non-perturbative • case of Gauss-Bonnet gravity Z 1 α 1 R 2 + α 2 R µ ν R µ ν + α 3 R µ νρσ R µ νρσ �⇤ d 5 x √− g R − 2 Λ + L 2 � ⇥ S R 2 = 2 κ 2 5  R 2 − 4 R µ ν R µ ν + R µ νρσ R µ νρσ �� Z R − 2 Λ + λ GB 1 d 5 x √− g L 2 � S GB = 2 κ 2 2 5

  5. H Y D R O DY N A M I C S

  6. 6 H Y D R O DY N A M I C S QCD and quark-gluon plasma • low-energy limit of QFTs (effective field theory) • = ( ε + P ) u µ u ν + Pg µ ν � ησ µ ν � ζ r · u ∆ µ ν + . . . T µ ν � u λ , T, µ � r µ T µ ν = 0 tensor structures (phenomenological gradient expansions) • with transport coefficients (microscopic)

  7. 7 H Y D R O DY N A M I C S conformal (Weyl-covariant) hydrodynamics • T µ µ = 0 g µ ν → e − 2 ω ( x ) g µ ν T µ ν → e 6 ω ( x ) T µ ν infinite-order asymptotic expansion • ∞ O H X T µ ν = T µ ν X α n k n +1 ω = ( n ) n =0 n =0 classification of tensors beyond Navier-Stokes • first order: 2 (1 in CFT) - shear and bulk viscosities second order: 15 (5 in CFT) - relaxation time, … [Israel-Stewart and extensions] third order: 68 (20 in CFT) - [S. G., Kaplis, PRD 93 (2016) 6, 066012, arXiv:1507.02461] 


  8. 8 H Y D R O DY N A M I C S • diffusion and sound dispersion relations in CFT " # η 2 τ Π ( ε + P ) 2 � 1 η θ 1 k 4 + O ε + P k 2 � i k 5 � � shear: ω = � i 2 ε + P " # η 2 τ Π 8 ( ε + P ) 2 � 1 θ 1 + θ 2 ω = ± c s k � i Γ c k 2 ⌥ Γ c k 4 + O Γ c � 2 c 2 k 3 � i k 5 � � � � sound: s τ Π 2 c s 9 3 ε + P • loop corrections break analyticity of the gradient expansion (long-time tails), but are 1/N suppressed [Kovtun, Yaffe (2003)] • entropy current, constraints on transport and new transport coefficients (anomalies, broken parity) • non-relativistic hydrodynamics • hydrodynamics from effective Schwinger-Keldysh field theory with dissipation [Nicolis, et. al.; S. G., Polonyi; Haehl, Loganayagam, Rangamani; de Boer, Heller, Pinzani-Fokeeva; Crossley, Glorioso, Liu]

  9. 9 H Y D R O DY N A M I C S F R O M H O LO G R A P H Y holography can compute microscopic transport coefficients [Policastro, • Son, Starinets (2001)] low-energy limit of QFTs / low-energy gravitational perturbations in • backgrounds with black holes Green’s functions and Kubo formulae • R (0) − 1 RA (0 , x ) h cd ( x ) + 1 Z Z d 4 xG ab,cd d 4 xd 4 yG ab,cd,ef T ab = G ab ⌦ ↵ R (0) (0 , x, y ) h cd ( x ) h ef ( y ) + . . . RAA 2 8 quasi-normal modes [Kovtun, Starinets (2005)] • ∞ X α n k n +1 ω = n =0 fluid-gravity [Bhattacharyya, Hubeny, Minwalla, Rangamani (2007)] 
 •

  10. 10 N = 4 AT I N F I N I T E CO U P L I N G type IIB theory on S 5 dual to N=4 supersymmetric Yang-Mills at • infinite ’t Hooft coupling and infinite N c ✓ ◆ Z 1 R + 12 d 5 x √− g S = 2 κ 2 L 2 5 κ 5 = 2 π /N c black brane • ds 2 = r 2 du 2 − f ( u ) dt 2 + dx 2 + dy 2 + dz 2 � f ( u ) = 1 − u 2 0 � + 4 u 2 f ( u ) u use to find field theory stress-energy tensor to third order 
 •  � h D σ ab i + 1 T ab = ε u a u b + P ∆ ab � ησ ab + ητ Π 3 σ ab ( r · u ) h i R h ab i � 2 u c R c h ab i d u d + κ 20 c σ b i c + λ 2 σ h a c Ω b i c + λ 3 Ω h a c Ω b i c + X + λ 1 σ h a λ (3) n O n n =1

  11. 11 N = 4 AT I N F I N I T E CO U P L I N G transport coefficients [S. G., Kaplis, PRD 93 (2016) 6, 066012, arXiv:1507.02461] 
 • η = π s = 1 η 8 N 2 c T 3 4 π κ = N 2 c T 2 λ 1 = N 2 c T 2 λ 2 = − N 2 c T 2 τ Π = (2 − ln 2) ln 2 λ 3 = 0 2 π T 8 16 8 ≡ − θ 1 = − N 2 c T λ (3) + λ (3) + λ (3) 1 2 4 32 π ≡ − θ 2 = N 2 ✓ π 2 ◆ c T 12 + 18 ln 2 − ln 2 2 − 22 λ (3) + λ (3) + λ (3) 3 5 6 384 π 16 = N 2 ✓ π 2 ◆ c T 12 + 4 ln 2 − ln 2 2 λ (3) − λ (3) 1 16 π 17 = N 2 ✓ π 2 ◆ c T 12 + 2 ln 2 − ln 2 2 λ (3) 16 π λ (3) + 4 λ (3) + 4 λ (3) + 5 λ (3) + 5 λ (3) + 4 λ (3) − λ (3) 1 2 3 4 5 6 7 6 3 3 6 6 3 2 + 3 λ (3) + λ (3) − 2 λ (3) − 11 λ (3) − λ (3) + λ (3) 15 = N 2 c T 15 − 2 π 2 − 45 ln 2 + 24 ln 2 2 − λ (3) 8 9 10 11 12 13 � � 2 2 3 6 3 6 648 π

  12. 12 TO P- D O W N CO N ST R U C T I O N type IIB action with ’t Hooft coupling corrections • ✓ ◆ 1 R − 1 1 Z d 10 x √− g 5 + γ e − 3 2 ( ∂φ ) 2 − 2 φ W + . . . 4 · 5! F 2 S IIB = 2 κ 2 10 α 0 /L 2 = λ � 1 / 2 γ = α 0 3 ζ (3) / 8 ρσδ + 1 W = C αβγδ C µ βγν C ρσ µ C ν 2 C αδβγ C µ νβγ C ρσ µ C ν α α ρσδ dimensional reduction • ✓ ◆ Z 1 R + 12 d 5 x √− g S = L 2 + γ W 2 κ 2 5 black brane 
 • ds 2 = r 2 du 2 − f ( u ) Z t dt 2 + dx 2 + dy 2 + dz 2 � f ( u ) = 1 − u 2 0 � + Z u 4 u 2 f u 5 u 2 + 5 u 4 − 3 u 6 � 5 u 2 + 5 u 4 − 19 u 6 � � � Z t = 1 − 15 γ Z u = 1 + 15 γ

  13. 13 TO P- D O W N CO N ST R U C T I O N N=4 transport coefficients to second order [S. G., Starinets, JHEP 1503 (2015) • 007 arXiv:1412.5685] η = π s = 1 c T 3 (1 + 135 γ + . . . ) η ⇣ 1 + 15 ζ (3) λ − 3 / 2 + . . . ⌘ 8 N 2 4 π τ Π = (2 − ln 2) + 375 γ 4 π T + . . . 2 π T κ = N 2 c T 2 (1 − 10 γ + . . . ) 8 η λ 1 = N 2 c T 2 s (1 + 350 γ + . . . ) 16 λ 2 = − N 2 c T 2 (2 ln 2 + 5 (97 + 54 ln 2) γ + . . . ) 16 λ 3 = 25 N 2 c T 2 γ + . . . 2 ¯ h 4 π k B g 2 N c 0 [Kovtun, Son, Starinets (2005)]

  14. 14 B OT TO M - U P CO N ST R U C T I O N curvature-squared theory [S. G., Starinets, JHEP 1503 (2015) 007 arXiv:1412.5685] • Z 1 α 1 R 2 + α 2 R µ ν R µ ν + α 3 R µ νρσ R µ νρσ �⇤ d 5 x √− g R − 2 Λ + L 2 � ⇥ S R 2 = 2 κ 2 5 η = r 3 + (1 − 8 (5 α 1 + α 2 )) + O ( α 2 i ) 2 κ 2 5 ητ Π = r 2 − r 2 + (2 − ln 2) + (23 + 5 ln 2) ✓ 1 − 26 ◆ α 3 + O ( α 2 3 (5 α 1 + α 2 ) i ) 4 κ 2 12 κ 2 5 5 κ = r 2 − 25 r 2 ✓ ◆ 1 − 26 + + α 3 + O ( α 2 3 (5 α 1 + α 2 ) i ) 2 κ 2 6 κ 2 5 5 λ 1 = r 2 − r 2 ✓ 1 − 26 ◆ + + α 3 + O ( α 2 3 (5 α 1 + α 2 ) i ) 4 κ 2 12 κ 2 5 5 λ 2 = − r 2 − r 2 + ln 2 ✓ ◆ + (21 + 5 ln 2) 1 − 26 α 3 + O ( α 2 3 (5 α 1 + α 2 ) i ) 2 κ 2 6 κ 2 5 5 λ 3 = − 28 r 2 + α 3 + O ( α 2 i ) κ 2 5

  15. 15 B OT TO M - U P CO N ST R U C T I O N Gauss-Bonnet theory [S. G., Starinets, Theor. Math. Phys. 182 (2015) 1, 61-73] •  R 2 − 4 R µ ν R µ ν + R µ νρσ R µ νρσ �� Z R − 2 Λ + λ GB 1 d 5 x √− g L 2 � S GB = 2 κ 2 2 5 p γ = 1 − 4 λ GB η = s γ 2 / 4 π 1 ✓ 1 ✓ 5 + γ − 2 ◆ − 1  2 (1 + γ ) �◆ s = 1 η τ Π = 4 (1 + γ ) 2 log 4 π (1 − 4 λ GB ) 2 π T γ γ ! � 3 − 4 γ + 2 γ 3 � (1 + γ ) η λ 1 = 2 π T 2 γ 2 ✓ ✓ ◆  2 (1 + γ ) �◆ − 1 1 + γ − 2 + 1 λ 2 = − η 4 (1 + γ ) 2 log π T γ γ ! � 3 + γ − 4 γ 2 � (1 + γ ) λ 3 = − η π T γ 2 ! � 2 γ 2 − 1 � (1 + γ ) κ = η π T 2 γ 2 η 2 γ 2 + γ − 1 � � θ 1 = 8 π 2 T 2 γ

  16. 16 L I M I T S O F T H E G AU S S - B O N N E T T H E O R Y how can we interpret the extreme limits of the Gauss-Bonnet coupling? • exact spectrum in the extreme (anomalous) limit of • λ GB = 1 / 4 ⇣ ⌘ ⇣ ⌘ p p Scalar: w = − i 4 + 2 n 1 − 4 − 3 q 2 w = − i 4 + 2 n 2 + 4 − 3 q 2 , Shear: w = − 2 i (1 + n 1 ) , w = − 2 i (3 + n 2 ) ⇣ ⌘ ⇣ ⌘ p p Sound: w = − i 4 + 2 n 1 − 4 + q 2 w = − i 4 + 2 n 2 + 4 + q 2 , in the extreme ``weak” limit there is a curvature • λ GB → −∞ singularity, which needs a stringy resolution λ GB →−∞ S GB = λ GB L 2  � Z 4 Λ R 2 − 4 R µ ν R µ ν + R µ νρσ R µ νρσ − d 5 x √− g lim 4 κ 2 λ GB L 2 5 2 3 r r 4 r 2 L 2 r 2 1 − ˜ 4 − ˜ r 2 + ˜ ds 2 = r 4 dt 2 + dx 2 + dy 2 + dz 2 � p + � − λ GB d ˜ 5 L 2 q L 2 ˜ r 4 ˜ r 2 + ˜ 1 − r 4 ˜

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend