eigenvalue bounds in cr and quaternionic contact
play

Eigenvalue bounds in CR and Quaternionic Contact geometries under - PowerPoint PPT Presentation

Eigenvalue bounds in CR and Quaternionic Contact geometries under positive Ricci bound Dimiter Vassilev, University of New Mexico . . Collaborators: Stefan Ivanov (University of Sofia) & Alexander Petkov, (University of Sofia)


  1. Eigenvalue bounds in CR and Quaternionic Contact geometries under positive ”Ricci” bound Dimiter Vassilev, University of New Mexico . . Collaborators: Stefan Ivanov (University of Sofia) & Alexander Petkov, (University of Sofia) September 30, 2014

  2. Comparison results Suppose ( M , h ) complete Riemannian manifold of dimension n with Ric ( X , X ) ≥ ( n − 1 ) h ( X , X ) . △ f = λ f . i) λ ≥ n . ii) If ∇ 2 f = − fh , f �≡ 0, then ( M , h ) is isometric with S n ( 1 ) . Notes: 1. Bonnet-Myers: M is compact, diam ( M ) ≤ π and π 1 ( M ) is finite. 2. Lichnerowicz: λ ≥ n , Bochner-Weitzenb¨ ock formula. 3. Obata: if there is λ = n , then ( M , h ) is isometric with S n ( 1 ) . 4. S.Y. Cheng ’75 (improved Toponogov): diam ( M ) = π iff M is isometric to S n ( 1 ) .

  3. Lichnerowicz’ estimate Bochner’s identity ( △ ≥ 0 ) : − 1 2 △|∇ f | 2 = |∇ df | 2 − h ( ∇ ( △ f ) , ∇ f ) + Ric ( ∇ f , ∇ f ) . Therefore M | ( ∇ df ) 0 | 2 + 1 n ( △ f ) 2 − h ( ∇ ( △ f ) , ∇ f ) + Ric ( ∇ f , ∇ f ) dvol . � 0 = For △ f = λ f we get � | ( ∇ df ) 0 | 2 + 1 n λ |∇ f | 2 − λ |∇ f | 2 + Ric ( ∇ f , ∇ f ) dvol 0 = M � � Ric ( ∇ f , ∇ f ) − n − 1 | ( ∇ df ) 0 | 2 dvol + λ |∇ f | 2 dvol = n M M � | ( ∇ df ) 0 | 2 dvol + n − 1 � ( n − λ ) |∇ f | 2 dvol ≥ n M M for Ric ( ∇ f , ∇ f ) ≥ ( n − 1 ) |∇ f | 2 . Hence 0 ≥ n − λ .

  4. Equality implies Einstein Proposition If ( M , h ) is a compact Riemannian manifold of dimension n with Ric ( X , X ) ≥ ( n − 1 ) h ( X , X ) and △ f = nf, then M is Einstein. Key: ◮ ∇ Ric 0 ( ∇ f , X , Y ) = 2 fRic 0 ( X , Y ) + trace term, hence L ∇ f | Ric 0 | 2 k = 4 kf | Ric 0 | 2 k . M | Ric 0 | 2 k f 2 dvol = 1 ◮ � � M h ( ∇| Ric 0 | 2 k f , ∇ f ) dvol n M | Ric 0 | 2 k |∇ f | 2 dvol + 4 k M | Ric 0 | 2 k f 2 dvol . = 1 � � n n M | Ric 0 | 2 k f 2 dvol = M | Ric 0 | 2 k |∇ f | 2 dvol , hence ◮ ( n − 4 k ) � � choosing k > n / 4 it follows Ric 0 = 0.

  5. sub-Riemannian results 1. Rumin, M., ’94: Bonnet-Myers type theorem on general 3-D CR manifolds. 2. Hughen, K., ’95: Bonnet-Myers type theorem on 3-D Sasakian. 3. Chanillo, S., Yang, P .-C.: Isoperimetric inequalities & volume comparison theorems on CR manifolds. Ann. Sc. Norm. Super. Pisa, (2009) 4. (Bakry-Emery) F . Baudoin, N. Garofalo, I. Munive, B. Kim, J. Wang; E. Grong & A. Thalmaier: curvature-dimension inequalities ⇒ Myers-type theorems, volume doubling, Li-Yau inequality, Sobolev, Harnack,... 5. (Sturm, Lott & Villani) A. Agrachev, P . Lee, Chengbo Li, I. Zelenko, D. Barilari & L. Rizzi,...: Bishop comparison theorem, Harnack, Laplacian/ Hessian comparison,.. 6. R. Hladky - Lichnerowicz type estimates, Bonnet-Myers,..

  6. CR S ETTING

  7. CR manifolds Definition (SPCSH manifold) ( M , θ, J ) is strictly pseudoconvex pseudohermitian manifold if θ is a contact form, H = ker θ has a compatible Hermitian structure: J : H → H, J 2 = − id H , 2 g ( X , Y ) def = d θ ( X , JY ) is positive definite on H; g ( X , Y ) = g ( JX , JY ) ; [ JX , JY ] − [ X , Y ] − J [ JX , Y ] − J [ X , JY ] = 0 . Reeb field ξ : θ ( ξ ) = 1 and ξ � d θ = 0. 2-form: ω ( X , Y ) def = g ( JX , Y ) . Theorem (Tanaka-Webster connection) (i) ∇ ξ = ∇ J = ∇ θ = ∇ g = 0 ; (ii) the torsion T ( A , B ) = ∇ A B − ∇ B A − [ A , B ] satisfies: T ( X , Y ) = 2 ω ( X , Y ) ξ and T ( ξ, X ) ∈ H, g ( T ( ξ, X ) , Y ) = g ( T ( ξ, Y ) , X ) = − g ( T ( ξ, JX ) , JY ) . The Webster torsion A , A def = T ( ξ, . ) : H → H , is a symmetric ( 2 , 0 ) + ( 0 , 2 ) tensor. A is the obstruction for a pseudohermitian manifold to be Sasakian.

  8. Curvature of the Tanaka-Webster connection Define the Riemannian metric ” h = g + η 2 ”. Let { ǫ a } 2 n a = 1 -ONB of the horizontal space H . 1. Tanaka-Webster curvature: R ( A , B ) C def = [ ∇ A , ∇ B ] C − ∇ [ A , B ] C and R ( A , B , C , D ) def = h ( R ( A , B ) C , D ) . 2. Ricci tensor: Ric ( A , B ) = R ( ǫ a , A , B , ǫ a ) def = � 2 n a = 1 R ( ǫ a , A , B , ǫ a ) ; scalar curvature S = Ric ( ǫ a , ǫ a ) ; 3. Ricci form: ρ ( A , B ) = 1 2 R ( A , B , ǫ a , J ǫ a ) . Type decomposition of the Ricci tensor: Ric ( X , Y ) = ρ ( JX , Y ) + 2 ( n − 1 ) A ( JX , Y ) . Ricci identity example : ∇ 3 f ( X , Y , ξ ) − ∇ 3 f ( ξ, X , Y ) = ∇ 2 f ( AX , Y ) + ∇ 2 f ( X , AY ) + ( ∇ X A )( Y , ∇ f ) + ( ∇ Y A )( X , ∇ f ) − ( ∇ ∇ f ) A ( X , Y ) . Horizontal divergence e.g.’s: sub-Laplacian: △ f = −∇ 2 f ( ǫ a , ǫ a ) ; CR contracted 2nd Bianchi:

  9. CR Lichnerowicz theorem Theorem (Greenleaf, A. ’85) for n ≥ 3; Li, S.-Y., & Luk, H.-S. ’04 for n=2) Let M be a compact spcph manifold of dimension 2 n + 1 , s.t., for some k 0 = const > 0 we have the Lichnerowicz-type bound Ric ( X , X ) + 4 A ( X , JX ) ≥ k 0 g ( X , X ) , X ∈ H . If n > 1 , then any eigenvalue λ of the sub-Laplacian satisfies n λ ≥ n + 1 k 0 . The standard Sasakian unit sphere has first eigenvalue equal to 2n with eigenspace spanned by the restrictions of all linear functions to the sphere.

  10. Theorem (Chiu, H.-L. ’06) n If n = 1 the estimate λ ≥ n + 1 k 0 holds assuming in addition that � the CR-Paneitz operator is non-negative M f · Cf Vol θ ≥ 0 , where Cf is the CR-Paneitz operator, Cf = ∇ 4 f ( e a , e a , e b , e b ) + ∇ 4 f ( e a , Je a , e b , Je b ) − 4 n ∇ ∗ A ( J ∇ f ) − 4 n g ( ∇ 2 f , JA ) . Note: Li, S.-Y., & Luk, H.-S. ’04 for n = 1 with condition. Given a function f we define the one form, P f ( X ) = ∇ 3 f ( X , e b , e b ) + ∇ 3 f ( JX , e b , Je b ) + 4 nA ( X , J ∇ f ) so we have Cf = −∇ ∗ P .

  11. The CR-Paneitz operator The divergence formula turns the non-negativity condition ” C ≥ 0” into � � f · Cf Vol θ = − P f ( ∇ f ) Vol θ ≥ 0 . M M ◮ For n > 1 always C ≥ 0, Graham,C.R., & Lee, J.M ’88. ◮ In the three dimensional case C ≥ 0 is a CR invariant by the pseudo-conformal invariance of C , Hirachi ’93, if θ = φ 2 θ then ˆ ˆ C = φ − 4 C .

  12. Embedded CR and the CR-Paneitz operator ◮ If A = 0, then C = const ✷ b ✷ b ≥ 0, where ✷ b is the Kohn Laplacian. Furthermore, M is embeddable Lempert, L. ’92. ◮ If n = 1, C ≥ 0 and S > 0 (for e.g. the CR Yamabe constant is positive), then M can be globally embedded into C N for some N . Chanillo, S., Chiu, H.-L., Yang, P . ’12.

  13. Proof of the CR Lichnerowicz estimate CR Bochner idenity: − 1 2 △|∇ f | 2 = |∇ df | 2 − g ( ∇ ( △ f ) , ∇ f )+ Ric ( ∇ f , ∇ f )+ 2 A ( J ∇ f , ∇ f ) + 4 ∇ df ( ξ, J ∇ f ) . The last term can be related to the traces of ∇ 2 f : � � 1 2 ng ( ∇ 2 f , ω ) 2 + A ( J ∇ f , ∇ f ) Vol θ ∇ 2 f ( ξ, J ∇ f ) Vol θ = − M M and also using the Paneitz operator − 1 2 n ( △ f ) 2 + A ( J ∇ f , ∇ f ) − 1 � � ∇ 2 f ( ξ, J ∇ f ) Vol θ = 2 nP f ( ∇ f ) Vol θ . M M

  14. ”key” from the CR Bochner identity Integrating the CR Bochner idenity (for arbitrary function f ) and M ∇ 2 f ( ξ, J ∇ f ) Vol θ term we � using the last two formulas for the find � Ric ( ∇ f , ∇ f ) + 4 A ( J ∇ f , ∇ f ) − n + 1 ( △ f ) 2 Vol θ 0 = n M � 2 − 1 2 n ( △ f ) 2 − 1 � � 2 ng ( ∇ 2 f , ω ) 2 Vol θ � ( ∇ 2 f ) + � � � M � − 3 � � + 2 nP ( ∇ f ) Vol θ . M � � 1 1 Notice that 2 n g , 2 n ω is an orthonormal set in the ( 1 , 1 ) √ √ space with non-zero traces, so − 1 2 n ( △ f ) 2 − 1 2 def 2 � � � � � ( ∇ 2 f ) [ 0 ] � ( ∇ 2 f ) 2 ng ( ∇ 2 f , ω ) 2 . = � � � � � �

  15. Assuming △ f = λ f and the ”Ricci” bound we obtain the inequality: � � k 0 − n + 1 � � � 2 Vol θ |∇ f | 2 Vol θ + � ( ∇ 2 f ) [ 0 ] � � 0 ≥ λ n M M − 3 � P f ( ∇ f ) Vol θ , 2 n M n which implies λ ≥ n + 1 k 0 with equality holding iff ∇ 2 f = 1 2 n ( △ f ) · g + 1 2 ng ( ∇ 2 f , ω ) · ω � and M P f ( ∇ f ) Vol θ = 0 (use the extra assumption for n = 1!).

  16. CR Obata type theorem Theorem ( n ≥ 2, Li, S.-Y., Wang, X. ’13; n=1 w/ Ivanov ’14) Suppose ( M , J , θ ) , dim M = 2 n + 1 , is a compact spcph manifold which satisfies the Lichnerowicz-type bound. If n ≥ 2 , n then λ = n + 1 k 0 is an eigenvalue iff up-to a scaling ( M , J , θ ) is the standard pseudo-Hermitian CR structure on the unit sphere in C n + 1 . If n = 1 the same conclusion holds assuming in addition C ≥ 0 . Earlier results ◮ Sasakian case, Chang, S.-C., & Chiu, H.-L., for n ≥ 2 in J. Geom. Anal. ’09; for n = 1 in Math. Ann. ’09. ◮ Non-Sasakian case, Chang, S.-C., & Wu, C.-T., ’12, assuming: (i) for n ≥ 2, A αβ, ¯ β = 0 and A αβ, γ ¯ γ = 0; (ii) for n = 1, A 11 , ¯ 1 = 0 and P 1 f = 0. ◮ w/ S. Ivanov ’12 - assuming ∇ ∗ A = 0 and C ≥ 0 when n = 1.

  17. Q UATERNIONIC C ONTACT S ETTING

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend