threshold production compton scattering on the deuteron
play

Threshold production/Compton scattering on the deuteron Bruno - PowerPoint PPT Presentation

Introduction Experiment Analysis Summary Threshold production/Compton scattering on the deuteron Bruno Strandberg The University Of Glasgow Nuclear Physics Group June 6, 2016 Introduction Experiment Analysis Summary Outline


  1. Introduction Experiment Analysis Summary Threshold π − production/Compton scattering on the deuteron Bruno Strandberg The University Of Glasgow Nuclear Physics Group June 6, 2016

  2. Introduction Experiment Analysis Summary Outline Introduction 1 Experiment 2 Experimental setup Event counting Analysis 3 Backgrounds Signals Expected results Summary 4

  3. Introduction Experiment Analysis Summary Introduction Why measure γ + 2 H → π − + 2p ( γ + n → π − + p )?

  4. Introduction Experiment Analysis Summary Why measure γ + 2 H → π − + 2p ( γ + n → π − + p )? Provides a test for various low-energy QCD models. Dispersion Theory Effective Field Theories SAID/MAID models

  5. Introduction Experiment Analysis Summary Why measure γ + 2 H → π − + 2p ( γ + n → π − + p )? Provides a test for various low-energy QCD models. Dispersion Theory Effective Field Theories SAID/MAID models Available cross-section data points below E γ = 200 MeV [1]: π 0 : 1524 π + : 92 π − : 51

  6. Introduction Experiment Analysis Summary Why measure γ + 2 H → π − + 2p ( γ + n → π − + p )? Provides a test for various low-energy QCD models. Dispersion Theory Effective Field Theories SAID/MAID models Available cross-section data points below E γ = 200 MeV [1]: π 0 : 1524 π + : 92 π − : 51 No π − data below E γ = 158 MeV . Last known π − measurement in 1994 by Liu (PhD thesis, unpublished).

  7. Introduction Experiment Analysis Summary Why measure γ + 2 H → γ ′ + 2 H ?

  8. Introduction Experiment Analysis Summary Why measure γ + 2 H → γ ′ + 2 H ? Access neutron polarisabilities.

  9. Introduction Experiment Analysis Summary Why measure γ + 2 H → γ ′ + 2 H ? Access neutron polarisabilities. Test for HB χ PT.

  10. Introduction Experiment Analysis Summary Why measure γ + 2 H → γ ′ + 2 H ? Access neutron polarisabilities. Test for HB χ PT. No data close above pion threshold.

  11. Introduction Experiment Analysis Summary Experiment - setup

  12. Introduction Experiment Analysis Summary The experiment was performed at Maxlab in Lund, Sweden.

  13. Introduction Experiment Analysis Summary The experiment was performed at Maxlab in Lund, Sweden. Mainly a synchrotron radiation facility. For nuclear physics: electron beam with E e = 190 MeV

  14. Introduction Experiment Analysis Summary The experiment was performed at Maxlab in Lund, Sweden. Mainly a synchrotron radiation facility. For nuclear physics: electron beam with E e = 190 MeV Create tagged Bremsstrahlung photon beam from electron beam, E γ from 140 to 160 MeV. Experimental hall Collimator Bremsstrahlung γ Tagging magnet Post-Bremsstrahlung e − Radiator Incoming e − ... Counter #6 Counter #4 Counter #2 ... Counter #5 Counter #3 Counter #1 ... Ch4 Ch3 Ch2 Ch1 Ch0 Focal Plane Detector

  15. Introduction Experiment Analysis Summary 761.7 mm BUNI 222 mm 559 mm 150 mm 381mm 96 mm γ z-axis 120 ➦ 210 mm 150 ➦ 60 ➦ 822 mm 297 mm 372 mm 200 mm 138 mm 635 mm 240 mm 115 mm DIANA 560 mm CATS 510 mm 703 mm Figure : Floor plan of the experiment at Maxlab in Lund, Sweden.

  16. Introduction Experiment Analysis Summary Figure : Experimental hall at Maxlab in Lund, Sweden.

  17. Introduction Experiment Analysis Summary Experiment - event counting

  18. Introduction Experiment Analysis Summary Reaction γ + 2 H → π − + 2p , pion produced on the neutron. Liquid deuterium target p Incoming γ π − 68 mm p 150 mm

  19. Introduction Experiment Analysis Summary Reaction γ + 2 H → π − + 2p , pion produced on the neutron. π - capture simulation Liquid deuterium target 1 n n p 0.8 Incoming γ π − Events 0.6 68 mm 0.4 p 0.2 γ 150 mm 0 50 60 70 80 90 100 110 120 130 140 Detected Energy [MeV] Radiative capture reaction π − + 2 H → γ + 2n , pion captured on the proton. Identify pions through counting radiative capture photons .

  20. Introduction Experiment Analysis Summary Reaction γ + 2 H → π − + 2p , pion produced on the neutron. π - capture simulation Liquid deuterium target 1 n n p 0.8 Incoming γ π − Events 0.6 68 mm 0.4 p 0.2 γ 150 mm 0 50 60 70 80 90 100 110 120 130 140 Detected Energy [MeV] Radiative capture reaction π − + 2 H → γ + 2n , pion captured on the proton. Identify pions through counting radiative capture photons . Assumption: radiative photons emitted isotropically, effectively we do 3 simultaneous σ measurements.

  21. Introduction Experiment Analysis Summary Competing scenarios to radiative capture π − + 2 H → γ + 2n ? Liquid deuterium target p Incoming γ π − 68 mm p 150 mm

  22. Introduction Experiment Analysis Summary Competing scenarios to radiative capture π − + 2 H → γ + 2n ? Escape from target volume - Geant4 simulation . Liquid deuterium target p Incoming γ π − 68 mm p 150 mm

  23. Introduction Experiment Analysis Summary Competing scenarios to radiative capture π − + 2 H → γ + 2n ? Escape from target volume - Geant4 simulation . Decay - Geant4 simulation . Liquid deuterium target µ − p Incoming γ π − 68 mm ¯ ν µ p 150 mm

  24. Introduction Experiment Analysis Summary Competing scenarios to radiative capture π − + 2 H → γ + 2n ? Escape from target volume - Geant4 simulation . Decay - Geant4 simulation . Non-rad capture π − + 2 H → 2n - Branching ratio known π − + 2 H → 2n π − + 2 H → γ 2n = 2 . 83 ± 0 . 04 [2] Liquid deuterium target n p Incoming γ π − 68 mm n p 150 mm

  25. Introduction Experiment Analysis Summary Competing scenarios to radiative capture π − + 2 H → γ + 2n ? Escape from target volume - Geant4 simulation . Decay - Geant4 simulation . Non-rad capture π − + 2 H → 2n - Branching ratio known π − + 2 H → 2n π − + 2 H → γ 2n = 2 . 83 ± 0 . 04 [2] Other scenarios ∼ < 1% [3, 4, 5] Liquid deuterium target p Incoming γ π − 68 mm p 150 mm

  26. Introduction Experiment Analysis Summary The Compton events γ + 2 H → γ ′ + 2 H ′ are identified through E γ − E γ ′ = 0. Compton scattering simulation 1 0.8 Events 0.6 0.4 0.2 0 − − − − − − − 14 12 10 8 6 4 2 0 2 4 E - E [MeV] γ γ '

  27. Introduction Experiment Analysis Summary The Compton events γ + 2 H → γ ′ + 2 H ′ are identified through E γ − E γ ′ = 0. Compton scattering simulation 1 0.8 Events 0.6 0.4 0.2 0 − − − − − − − 14 12 10 8 6 4 2 0 2 4 E - E [MeV] γ γ ' Note the difference compared to π − measurement:

  28. Introduction Experiment Analysis Summary The Compton events γ + 2 H → γ ′ + 2 H ′ are identified through E γ − E γ ′ = 0. Compton scattering simulation 1 0.8 Events 0.6 0.4 0.2 0 − − − − − − − 14 12 10 8 6 4 2 0 2 4 E - E [MeV] γ γ ' Note the difference compared to π − measurement: For π − we measure σ VS For Compton we measure d σ d Ω points.

  29. Introduction Experiment Analysis Summary Analysis - backgrounds Neutron background channels: Signal and background contributions 0.08 0.07 0.06 0.05 Events 0.04 0.03 0.02 π - 2 → γ H 2n 0.01 0 50 60 70 80 90 100 110 120 130 140 Detected Energy [MeV]

  30. Introduction Experiment Analysis Summary Neutron background channels: 1 Non-rad. capture π − + 2 H → 2n , 2 . 83 × σ γ 2n (Geant4) Signal and background contributions 0.08 0.07 0.06 0.05 Events 0.04 0.03 0.02 π - 2 → γ H 2n 0.01 π - 2 → H 2n 0 50 60 70 80 90 100 110 120 130 140 Detected Energy [MeV]

  31. Introduction Experiment Analysis Summary Neutron background channels: 1 Non-rad. capture π − + 2 H → 2n , 2 . 83 × σ γ 2n (Geant4) 2 Photodisinteg. γ + 2 H → np , σ np ∼ σ π − 2p (Geant4, [6]) Signal and background contributions 0.08 0.07 0.06 0.05 Events 0.04 0.03 γ 2 → H np 0.02 π - 2 → γ H 2n 0.01 π - 2 → H 2n 0 50 60 70 80 90 100 110 120 130 140 Detected Energy [MeV]

  32. Introduction Experiment Analysis Summary Neutron background channels: 1 Non-rad. capture π − + 2 H → 2n , 2 . 83 × σ γ 2n (Geant4) 2 Photodisinteg. γ + 2 H → np , σ np ∼ σ π − 2p (Geant4, [6]) Signal and background contributions 0.08 0.07 0.06 0.05 Events 0.04 0.03 0.02 π - 2 → γ H 2n 0.01 Kapton bkg 0 50 60 70 80 90 100 110 120 130 140 Detected Energy [MeV] Other background channels: 1 Kapton container background, measured (dummy target run).

  33. Introduction Experiment Analysis Summary Neutron background channels: 1 Non-rad. capture π − + 2 H → 2n , 2 . 83 × σ γ 2n (Geant4) 2 Photodisinteg. γ + 2 H → np , σ np ∼ σ π − 2p (Geant4, [6]) Signal and background contributions 0.08 0.07 0.06 0.05 Events 0.04 0.03 π 0 bkg 0.02 π - 2 → γ H 2n 0.01 Kapton bkg 0 50 60 70 80 90 100 110 120 130 140 Detected Energy [MeV] Other background channels: 1 Kapton container background, measured (dummy target run). 2 Pi0 single photon background, σ π 0 np < σ π − 2p (Geant4).

  34. Introduction Experiment Analysis Summary Analysis - signals

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend