thermodynamics course no me 209 department mechanical
play

THERMODYNAMICS Course No: ME 209 Department: Mechanical - PowerPoint PPT Presentation

Slide 1/18 THERMODYNAMICS Course No: ME 209 Department: Mechanical Engineering Instructor: U. N. Gaitonde Lecture 23: Open Thermodynamic Systems ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde Slide 2/18 Lecture 23: Open Thermodynamic


  1. Slide 1/18 THERMODYNAMICS Course No: ME 209 Department: Mechanical Engineering Instructor: U. N. Gaitonde Lecture 23: Open Thermodynamic Systems ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  2. Slide 2/18 Lecture 23: Open Thermodynamic Systems • Illustrations of open thermodynamic systems • A specific case for study and derivation • Generalisation • Application to typical engineering systems • Numerical Exercises ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  3. Slide 3/18 Illustrations • Turbines, compressors, pumps • Fans • Boilers, condensers, heat exchangers • Ducts • Rooms and buildings • Car • Human being • . . . . An open system is also known as a control volume (CV). ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  4. Slide 4/18 A schematic open system The inflows and outflows could be through ducts or through ports. The flows could also be continuously distributed along the boundary. ˙ m e 1 � V ˙ m e 2 ˙ m i 2 ˙ m e 3 ˙ m i 1 ˙ ˙ ˙ ˙ W S W S Q Q ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  5. Slide 5/18 A schematic open system (contd) e ˙ Q CV i ˙ W S It has 1 inlet and 1 outlet. ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  6. Slide 6/18 The Situation The control volume state: volume V ( t ) , Mass M ( t ) , Energy E ( t ) , Entropy S ( t ) etc.. The fluids at inlet (i) and exit (e) are in local equilibrium. The situation at inlet and exit is 1-dimensional (1D), with everything uniform across the cross-section. Inlet state: area A i , density ρ i , volume v i , energy e i , velocity V i , etc.; V i normal to A i . Exit state: area A e , density ρ e , volume v e , energy e e , velocity V e , etc.; V e normal to A e . ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  7. Slide 7/18 The Situation (contd) The rate of heat transfer to the CV from its surroundings is ˙ Q ( t ) . The rate at which work is done by the CV is ˙ W S ( t ) . ˙ W S includes all components of work, except that required for making the fluid flow into and out of the CV. ˙ W S may include, e.g. expansion work, stirrer work, electrical work, etc.. ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  8. Slide 8/18 Inlet and exit ‘plugs’ e t +∆ t t ˙ Q CV i ˙ W S t +∆ t t ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  9. Slide 9/18 Inlet and exit ‘plugs’ d e e e’ f f’ ˙ Q CV i c c’ ˙ W S b b’ a ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  10. Slide 10/18 A closed system • Occupies the space [abcdefa] at time t . • Occupies the space [ab’c’de’f’a] at time t + ∆ t . • No mass flows across the boundaries of this system during this period. • So this is a closed system. • We apply conservation of mass to this system. Then, the first law, and finally, the second law. ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  11. Slide 11/18 The system – intial state d e e e’ f f’ ˙ Q CV i c c’ ˙ W S b b’ a The system at time t ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  12. Slide 12/18 The system – final state d e e e’ f f’ ˙ Q CV i c c’ ˙ W S b b’ a The system at time t + ∆ t ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  13. Slide 13/18 Process and Interactions d e e e’ W e M ( t ) → M ( t +∆ T ) f f’ E ( t ) → E ( t +∆ T ) ˙ Q ∆ t V ( t ) → V ( t +∆ T ) S ( t ) → S ( t +∆ T ) i c c’ ˙ W S ∆ t W i b b’ a Process and interactions from t to t + ∆ t ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  14. Slide 14/18 Conservation of Mass M system ( t + ∆ t ) = M system ( t ) M system ( t ) = M CV ( t ) + M [bcc’b’] M system ( t + ∆ t ) = M CV ( t + ∆ t ) + M [eff’e’] M [bcc’b’] = ρ i A i V i ∆ t M [eff’e’] = ρ e A e V e ∆ t ∴ M CV ( t + ∆ t ) + ρ e A e V e ∆ t = M CV ( t ) + ρ i A i V i ∆ t M CV ( t + ∆ t ) − M CV ( t ) = ρ i A i V i − ρ e A e V e ∆ t So, in the limit as ∆ t → 0 , dM CV = ρ i A i V i − ρ e A e V e dt ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  15. Slide 15/18 Conservation of Mass (contd) We use the nomenclature: Rate of inflow of mass = ˙ m i = ρ i A i V i Rate of outflow of mass = ˙ m e = ρ e A e V e So we have: dM CV = ˙ m i − ˙ m e dt which is the basic form of conservation of mass. ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  16. Slide 16/18 First law - for the system ∆ E = Q − W But ∆ E = E system ( t + ∆ t ) − E system ( t ) E system ( t ) = E CV ( t ) + E [bcc’b’] E system ( t + ∆ t ) = E CV ( t + ∆ t ) + E [eff’e’] E [bcc’b’] = ( ρ i A i V i ∆ t ) e i E [eff’e’] = ( ρ e A e V e ∆ t ) e e ∴ ∆ E = E CV ( t + ∆ t ) + ( ρ e A e V e ∆ t ) e e − E CV ( t ) − ( ρ i A i V i ∆ t ) e i ∆ E = E CV ( t + ∆ t ) − E CV ( t ) + ˙ m e e e ∆ t − ˙ m i e i ∆ t We have: Q = ˙ Q ∆ t ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  17. Slide 17/18 First law - for the system (contd) W = ˙ W S ∆ t + W e + W i W e = p e A e V e ∆ t = p e v e ˙ m e ∆ t W i = − p i A i V i ∆ t = − p i v i ˙ m i ∆ t ∴ W e + W i = ˙ m e ( p e v e )∆ t − ˙ m i ( p i v i )∆ t ∴ the first law becomes E CV ( t + ∆ t ) − E CV ( t ) + ˙ m e e e ∆ t − ˙ m i e i ∆ t = ˙ Q ∆ t − ˙ W S ∆ t − ˙ m e ( p e v e )∆ t + ˙ m i ( p i v i )∆ t Transposing and combining terms: E CV ( t + ∆ t ) − E CV ( t ) = ˙ Q ∆ t − ˙ W S ∆ t + ˙ m i ( e i + p i v i )∆ t − ˙ m e ( e e + p e v e )∆ t ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

  18. Slide 18/18 First law - for the control volume dE CV = ˙ Q − ˙ W S dt + ˙ m i ( e i + p i v i ) − ˙ m e ( e e + p e v e ) We now expand e i + p i v i = u i + V 2 2 + gz i + p i v i = h i + V 2 2 + gz i i i e e + p e v e = u e + V 2 2 + gz e + p i v e = h e + V 2 2 + gz e e e Thus m i ( h i + V 2 m e ( h e + V 2 dE CV = ˙ Q − ˙ i e W S + ˙ 2 + gz i ) − ˙ 2 + gz e ) dt This is a reasonably general form of the first law for open systems. ME 209 THERMODYNAMICS Lecture 23 U. N. Gaitonde

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend