theory of non abelian statistics fusion space of topo exc
play

Theory of non-Abelian statistics: fusion space of topo. exc. What - PowerPoint PPT Presentation

Theory of non-Abelian statistics: fusion space of topo. exc. What are the most general properties of the topological excitations? can be boson, can be fermion, can be semion, ... Consider a state with quasiparticles | i 1 , i 2 , i 3 ,


  1. Theory of non-Abelian statistics: fusion space of topo. exc. What are the most general properties of the topological excitations? can be boson, can be fermion, can be semion, ... Consider a state with quasiparticles | i 1 , i 2 , i 3 , · · · � at � x 1 , � x 2 , � x 3 , · · · , which is a gapped ground state of H + δ H trap x 1 ) + δ H trap x 2 ) + δ H trap ( � ( � ( � x 3 ) + · · · i 1 i 2 i 3 • The ground state subspace of the above Hamiltonian is the fusion space V F ( i 1 , i 2 , i 3 , · · · ) of the quasiparticles i 1 , i 2 , i 3 , · · · . • We assume the above ground state degeneracy is stable arbitary purterbations around � x 1 , � x 2 , � x 3 , · · · and the traped quasiparticles are said to be simple . • If the ground state subspace is not stable against any perturbations δ H ( � x 1 ) near � x 1 , then the quasiparticle i 1 at � x 1 is composite . • If i 1 is composite, we can add δ H ( � x 1 ) to split the ground state subspace: V F ( i 1 , i 2 , i 3 , · · · ) → V F ( j 1 , i 2 , i 3 , · · · ) ⊕ V F ( k 1 , i 2 , i 3 , · · · ) ⊕ · · · We denote i 1 = j 1 ⊕ k 1 ⊕ · · · . Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  2. Fusion algebra of (non-Abelian) topological excitations • For simple i , j , if we view ( i , j ) as one particle, it may correspond to a composite particle: k V F (˜ V F ( i , j , l 1 , l 2 , · · · ) = ⊕ ˜ k , l 1 , l 2 , · · · ) N ij k =1 V F = ⊕ k ⊕ k k ( k , l 1 , l 2 , · · · ) α ij α ij (k , ..) 2 i ⊗ j = ⊕ k N ij (k , ..) k k → the fusion algebra . (i,j,...) 1 Associativity : = � = � ( i ⊗ j ) ⊗ k = i ⊗ ( j ⊗ k ) = ⊕ l N ijk N ijk m N ij n N jk m N mk n N in l l , l l l Quantum dimension and vector space fractionalization: • In general, we cannot view V F ( i , j , k , · · · ) as V ( i ) ⊗ V ( j ) ⊗ V ( k ) ⊗ · · · , and dim[ V F ( i , i , i , · · · )] � = d n i , d i ∈ Z . Quasiparticle i may carry fractional degree freedom. dim[ V F ( i , i , · · · , i )] = � m 2 · · · N m n − 2 i = ( N i ) n − 1 m i N ii m 1 N m 1 i ∼ d n 1 i 1 i where the matrix ( N i ) jk = N ji k , and d i the largest eigenvalue of N i . • d i is called the quantum dimension of the quasiparticle i . Abelian particle → d i = 1. Non-Abelian particle → d i � = 1. Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  3. Relation between fusion spaces and the F -matrix • Two di ff erent ways to fuse i , j , k → l : i j k i j k F α in V F ( i , j , k , · · · ) = ⊕ m ⊕ N ij m n ij m =1 V F l m m ( m , k , · · · ) α m mk jk α ij α ij α l α n l l N mk = ⊕ m ⊕ N ij =1 V F m =1 ⊕ l ⊕ m l , m ( l , · · · ) α ij α ij α mk m ; α mk l l = ⊕ l {| l ; α ij m , α mk , m � } ⊗ V F ( l , · · · ) l V F ( i , j , k , · · · ) = ⊕ n ⊕ N jk n =1 V F n n ( i , n , · · · ) α jk α jk = ⊕ n ⊕ N jk N in l =1 V F n =1 ⊕ l ⊕ l , n ( l , · · · ) n l α jk α in α jk n ; α in = ⊕ l {| l ; α jk n , α in l , n � } ⊗ V F ( l , · · · ) l , m � = � ijk ; m , α ij m , α mk • | l ; α jk | l ; α jk n , α in n , α in l , n � l F l n , α jk n , α in l ; n , α jk n , α in l where F ijk is an unitary matrix. l Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  4. η δ χ χ δ ε φ γ δ α α β χ γ φ γ κ η ϕ β α δ α β χ φ γ Consistent conditions for F ijk ; m αβ and UFC l ; n χδ i j k l i j k l Two di ff erent ways of fusion and are related via m q n s p p two di ff erent paths of F-moves: i j k l i j k l i j k l � � � � � � q , δ , � F mkl ; n βχ q , δ , � ; s , φ , γ F mkl ; n βχ F ijq ; m α� = � = � Φ Φ p ; s φγ Φ m m q q , n p ; q δ� p ; q δ� s p p p � i j k l � � i j k l � � i j k l � t , η , ϕ F ijk ; m αβ t , η , ϕ ; s , κ , γ F ijk ; m αβ F itl ; n ϕχ = � = � t t Φ Φ p ; s κγ Φ m n ; t ηϕ n ; t ηϕ s n n p p p   i j k l t , η , κ ; ϕ ; s , κ , γ ; q , δ , φ F ijk ; m αβ p ; s κγ F jkl ; t ηκ F itl ; n ϕχ = � s ; q δφ Φ q n ; t ηϕ  .  s p The two paths should lead to the same unitary trans.: � � F ijk ; m αβ p ; s κγ F jkl ; t ηκ F mkl ; n βχ F ijq ; m α� F itl ; n ϕχ = n ; t ηϕ s ; q δφ p ; q δ� p ; s φγ t , η , ϕ , κ � Such a set of non-linear algebraic equations is the famous pentagon identity. Moore-Seiberg 89 N ij k , F ijk ; m αβ → Unitary fusion category (UFC) l ; n χδ Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  5. UFC and topological quasiparticles in di ff erent dimensions • Topological excitations in 1+1D are described/classi fi ed by (non-Abelian) UFC. i j k Consider topological excitations described by an arbitary UFC, can we realize them via a 1+1D lattice model? • Topological excitations in 2+1D (and beyond) are described by Abelian (symmetric) UFC: N ij k = N ji k . i j j i k In higher dimension, topological excitations also have non-trivial braiding properties. Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  6. β β α α γ Braiding and R-matrix i j i j • Two ways to fuse: R V F ( i , j , · · · ) = ⊕ k , α ˜ V F α ( k , · · · ) = ⊕ k {| k ; α � � } ⊗ V F ( k , · · · ) k k V F ( i , j , · · · ) = ⊕ k , β V F β ( k , · · · ) = ⊕ k {| k ; β � } ⊗ V F ( k , · · · ) • | k , α � � = � β R ij ; α k ; β | k , β � where R ij ; α k ; β is an unitray matrix. • Relation to the spin θ i = e i 2 π s i of the particle: j i 2 π rotation of ( i , j ) = 2 π rotation of k j i j i 2 π rotation of ( i , j ) = 2 π rotation R R of i and j and exchange i , j twice θ i θ j R ij ; γ k ; β R ji ; β k ; α = θ k δ γα k k k Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  7. β α φ λ η δ λ γ γ ε α α χ δ Consistent conditions for R ij ; α k ; β and UMTC j i k j j i k i k R F p n p l l l F R j i k j i k j j i k i k R F m n m l l m l l Hexagon identity: � p ; � F ikj ; p �λ F kij ; p φλ l ; m αγ R mk ; γ F ijk ; m αβ R ik ; φ l ; n ηδ R jk ; η n ; χ = l ; β l ; n χδ m αβ N ij k , F ijk ; m αβ , R ij ; α k ; β → Unitary modular tensor category (UMTC) l ; n χδ which describes non-Abelian statistics of 2+1D topo. excitations. Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  8. Boundary of topological order → gravitational anomaly • Boundary of (some) topologically ordered states is gapless Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  9. Boundary of topological order → gravitational anomaly • Boundary of (some) topologically ordered states is gapless • Boundary of topologically ordered states has gravitational anomaly Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

  10. Boundary of topological order → gravitational anomaly • Boundary of (some) topologically ordered states is gapless • Boundary of topologically ordered states has gravitational anomaly There is an one-to-one correspondence between effective d -dimensional topological theory Topologically orders and d − 1 -dimensional with ordered gravitational anomalies gravitational state anomaly Example 1 (gapless): • 1+1D chiral fermion L = i ( ψ † ∂ t ψ − ψ † ∂ x ψ ) → � ( k ) = vk . Gravitational anomalous, cannot appear as low energy e ff ective theory of any well-de fi nded local 1+1D lattice model. • But the above chiral fermion theory cannot appear as low energy e ff ective theory for the boundary of a 2+1D topologically ordered state – the ν = 1 IQH state (which has no topological excitations ). • The same bulk → many di ff erent boundary of the same gravitational anomaly, e.g. 3 edge modes ( v 1 k , − v 2 k , v 3 k ) Xiao-Gang Wen, Perimeter/MIT ESI, Vienna, Aug., 2014 Quantum entanglement, topological order, and tensor category

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend