theories of fission
play

Theories of Fission Topical Program: FRIB and the GW170817 Kilonova - PowerPoint PPT Presentation

Theories of Fission Topical Program: FRIB and the GW170817 Kilonova July, 19 th 2018 Nicolas Schunck LLNL-PRES-737743 LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National


  1. Theories of Fission Topical Program: FRIB and the GW170817 Kilonova July, 19 th 2018 Nicolas Schunck LLNL-PRES-737743 LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

  2. Characteristjcs of Fission Multj-scale Quantum Dynamical Process Entrance channel 2 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  3. Outline ● Introductjon ● Statjc Nuclear Propertjes Macroscopic-Microscopic Approach – – Nuclear Density Functjonal Theory ● Fission Dynamics Classical Dynamics (Stochastjc Langevin Equatjons) – – Quantum Dynamics (“Collectjve”) – Quantum Dynamics (“Non-collectjve”) ● Fission Spectrum ● Concluding Remarks 3 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  4. Macroscopic-microscopic Models (1/4) A phenomenological approach to nuclear structure • Start with deformed liquid drop(let) • Take into account nucleon degrees of freedom – Shell correctjon coming from the distributjon of single-partjcle levels – Pairing correctjon to mock up efgects of residual interactjons • Extensions to fjnite M. Bolsterli, E. O. Fiset, J. R. Nix, and J. L. Norton, PRC 5 , 1050 (1972); M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky, and C. Y. Wong, angular momentum or RMP 44 , 320 (1972); J. Dudek, B. Herskind, W. Nazarewicz, Z. Zymanski, T.R. Werner, PRC 38 940 temperature (1988) 4 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  5. Macroscopic-microscopic Models (2/4) The total binding energy is a sum of several components • Total energy is writuen • Macroscopic liquid drop energy • Shell correctjon • Pairing correctjon • Shell and pairing correctjons require a set of single-partjcle energies e n : need to solve the Schrödinger equatjon J. Dudek, T. Werner, ADNDT 50, 179 (1992)J. Dudek, T. Werner, ADNDT 59, 1 (1995); N. Schunck, J. Dudek, B. Herskind, PRC 75 054304 (2007); P. Möller, A. Sierk, T. Ichigawa, H. sagawa, ADNDT 109 , 1 (2012) 5 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  6. Macroscopic-microscopic Models (3/4) Deformatjons are collectjve d.o.f, single partjcles intrinsic d.o.f ● (One-body) Schrödinger equatjon ● Nuclear mean-fjeld potentjal can be Nilsson, Woods-Saxon, Folded-Yukawa, etc. ● Solve BCS equatjon to compute occupatjon of s.p. states and extract pairing energy ● How does that apply to fjssion? Deformatjon of the nuclear shape drive the – fjssion process (=collectjve variables) Compute energy for difgerent deformatjons → – potentjal energy surfaces 6 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  7. Macroscopic-microscopic Models (4/4) Examples M. Kowal, et al, PRC 82 , 014303 (2010) P. Möller, et al, ADNDT 109 , 1 (2012) ● Global theory: many propertjes of all nuclei in the nuclear chart ● Fast: many calculatjons need only a laptop ● Inconsistent framework – Each theoretjcal piece (macro, micro, pairing, RPA, etc.) is treated independently of the others – Predictjve power has not really changed since the 1970ies 7 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  8. Nuclear Density Functjonal Theory (1/3) DFT is a remapping of the quantum many-body problem ● Quantum mechanics rules: Start with best estjmate of a realistjc nuclear Hamiltonian ● Replace the exact wave functjon by a simpler form, the reference state: a product state ● Replace exact Hamiltonian with efgectjve one such that ● Energy is a functjonal of density of P. Hohenberg and W. Kohn, PR 136 , B864 (1964); W. Kohn and L. J. Sham, PR 140 , A1133 (1965); J. Engel, PRC 75 , 014306 (2007); M Bender, P.H. partjcles and pairing tensor Heenen, P.-G. Reinhard, RMP 75 , 121 (2003); J. Messud, M. Bender, and E. Suraud, PRC 80 , 054314 (2009). ● Spontaneous symmetry breaking 8 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  9. Nuclear Density Functjonal Theory (2/3) The densitjes contain all degrees of freedom of the system ● Form of the energy functjonal chosen by physicists, ofuen guided by characteristjcs of nuclear forces (central force, spin-orbit, tensor, etc.): Skyrme, Gogny, etc. ● Variatjonal principle: determine the actual densitjes of the nucleus by requiring the energy is minimal with respect to their variatjons – Resultjng equatjon is called HFB equatjon (Hartree-Fock-Bogoliubov) – Solving the equatjon gives densitjes and characteristjcs of the reference state ● Any observable can be computed when we know the density ● One can compute potentjal energy surfaces by solving the HFB equatjon with constraints on the value of the collectjve variables 9 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  10. Nuclear Density Functjonal Theory (3/3) Examples J. Zhao, et al, PRC 91 , 024321 (2015) M. Mustonen, J. Engel, PRC 93 , 014304 (2016) S. Goriely, R. Capote, PRC 89 , 054318 (2014) Octupole deformation β 30 β-decay half-lives Quadrupole deformation β 20 ● Global theory: many propertjes of all nuclei in the nuclear chart ● Consistent framework: a single energy functjonal and quantum many-body methods ● Computatjonally expensive – Mass-table-scale calculatjons require supercomputers – Computjng potentjal energy surfaces is an art 10 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  11. Fission Observables Statjc approaches can be used to compute some fjssion observables M. Chadwick, et al, Nucl. Data Sheets 112 , 2887 S. Goriely, et al, PRL 111 , 242502 (2013) (2011) • Fission barriers inputs to compute fjssion cross-sectjons (=rates) • Reductjon multj-dimensional → 1-dimensional (arbitrary) • Assume parabolic shape (not justjfjed) • Neglect collectjve inertja • Statjstjcal theory gives (rather poor) estjmates of primary fjssion yields 11 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  12. Classical Dynamics (1/3) Fission is a stochastjc difgusion process in the collectjve space ● How to extract fjssion product yields from the knowledge of the po- tentjal energy surface? – Analogy with classical theory of difgusion – Collectjve variable = generalized coordinate – Defjne related momentum Fluctuatjon-dissipatjon theorem ● Langevin equatjons Frictjon tensor Random force 12 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  13. Classical Dynamics (2/3) Practjcal examples P. Nadtochy and G. Adeev, PRC 72 , 054608 (2005); P. N. Nadtochy, A. Kelić, and K.-H. Schmidt, PRC 75 , 064614 (2007); J. Randrup and P. Möller, PRL 106 , 132503 (2011); J. Randrup, P. Möller, and A. J. Sierk, PRC 84 , 034613 (2011); P. Möller, J. Randrup, and A. J. Sierk, PRC 85 , 024306 (2012); J. Randrup and P. Möller, PRC 88 , 064606 (2013); J. Sadhukhan, W. Nazarewicz and N. Schunck, PRC 93 , 011304 (2016), J. Sadhukhan, W. Nazarewicz and N. Schunck, PRC 96 , 061361 (2017). • Start beyond the saddle point (or close enough) • Build trajectories through the collectjve space by generatjng at each step the needed random variable • Enough trajectories (in the thousands) allow reconstructjng FPY 13 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  14. Classical Dynamics (3/3) Langevin classical dynamics is ideal tool for spontaneous fjssion J. Sadhukhan, W. Nazarewicz and N. Schunck, Phys. Rev. C 93 , 011304 (2016); J. Sadhukhan, W. Nazarewicz, C. Zhang and N. Schunck, Phys. Rev. C (R) 96 , 061301 (2017)  SF mass distributjons can be obtained by combining quantum tunneling tech- niques (half-lives) and classical dynamics Collectjve inertja plays critjcal role in determining tunneling probability (= τ SF ) – – Evolutjon from saddle to scission done with Langevin dynamics (=classical_ with microscopic inputs (energy, inertja) – Dissipatjon tensor stjll cause of signifjcant uncertainty 14 LLNL-PRES-746697 LLNL-PRES-xxxxxx

  15. Quantum Dynamics - TDGCM (1/3) Computjng the fmow of probability in the collectjve space • Ansatz for the tjme-dependent many-body wave functjon • Minimizatjon of the tjme-dependent quantum mechanical actjon + ansatz + Gaussian overlap approximatjon + some patjence • Interpretatjon – is probability amplitude to be at point q at tjme t – Related probability current – Flux of probability current through scission line gives yields J.-F. Berger, M. Girod, D. Gogny, CPC 63 , 365 (1991); H. Goutte, J.-F. Berger, P. Casoli, D. Gogny, PRC 71 024316 (2005); D. Regnier, N. Dubray, N. Schunck, and M. Verrière, PRC 93 , 054611 (2016); D. Regnier, M. Verriere, N. Dubray, and N. Schunck, CPC 200 , 350 (2016) 15 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  16. Quantum Dynamics - TDGCM (2/3) Example: TDGCM Evolutjon 16 LLNL-PRES-737743 LLNL-PRES-xxxxxx

  17. Quantum Dynamics – TDGCM (3/3) Examples: Fission Product Yield Calculatjons 17 LLNL-PRES-737743 LLNL-PRES-xxxxxx

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend