impact of nuclear moments of inertia on fission
play

IMPACT OF NUCLEAR MOMENTS OF INERTIA ON FISSION OBSERVABLES 6th - PowerPoint PPT Presentation

IMPACT OF NUCLEAR MOMENTS OF INERTIA ON FISSION OBSERVABLES 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei | Pierre Tamagno Olivier Litaize CEA/Cadarache MARCH 20-24, 2017 www.cea.fr www.cea.fr 31 MAI 2017 CEA


  1. IMPACT OF NUCLEAR MOMENTS OF INERTIA ON FISSION OBSERVABLES 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei | Pierre Tamagno – Olivier Litaize CEA/Cadarache MARCH 20-24, 2017 www.cea.fr www.cea.fr 31 MAI 2017 CEA | 10 AVRIL 2012 | PAGE 1

  2. OUTLINE FIFRELIN calculation scheme Role of the moments of inertia and comparison of models for nuclear moments of inertia Impact of shell-structured MoI on fission observables 31 MAI 2017 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei | March 20-24, 2017 | PAGE 2

  3. THE FIFRELIN SIMULATION CODE CEA | 10 AVRIL 2012 | PAGE 3 31 MAI 2017

  4. THE FIFRELIN CODE (OUTLINE) Purpose “FIssion Fragment Evaporation Leading to an Investigation of Nuclear data” Provide information on various fission observables as detailed as possible Method Semi-classical simulation of fission decay events by Monte-Carlo sampling of transitions (Hauser-Feshbach) Advantage : many observables, correlation between them Disadvantage : time-consuming for parametric studies Ingredients Phenomenological / Microscopic “sub-"models (level density, strength functions, etc.) Experimental data (fragmentations sampling) Nuclear structure databases (RIPL3) 31 MAI 2017 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei | March 20-24, 2017 | PAGE 4

  5. THE FIFRELIN SIMULATION SCHEME* (OVERVIEW) * O. Litaize and O. Serot, Phys Rev C 82 (2010) Select a fissioning isotope Z fiss , A fiss , with excitation energy E* 1. Sample fragments masses and kinetics energies from experimental data 2. � A L , A H KE(A) Y(A) � TKE L , TKE H Sample fragments charges (Gaussian distribution) 3. 2 ( ) Z − Z p 1 − P ( Z ) = c π e c � Z L , Z H Sample fragments angular moments according to a Rayleigh distributions 4. − ( J + 1 / 2) 2 P ( J ) = J + 1 / 2 2 σ 2 e σ 2 1/2 parity sampling � J L , J H , π L , π H Rotational energy E rot L + E rot H is removed from available energy Q and remaining 5. intrinsic energy is distributed according a to temperature-ratio law � (A L ,Z L ) J L, π L , E L * � (A H ,Z H ) J H, π H , E H * | PAGE 5

  6. THE FIFRELIN CODE (CASCADE DECAY) Starting from fragment (A,Z) in state E*,J, π 1. Sampling levels in unknown (continuum) region from level density ρ ( Ε * , J , π ) 2. Experimental levels Additional levels dE dE (from level density sampling) gs A-1 3. Calculating transition width for γ -emission ( γ -strength function) and neutron emission (Optical Model) + level density (again) XL ( E i − E j ) XL ( E i − E j ) 2 L +1 S γ gs y 2 Γ γ i → j = P A 3. ρ ( E i , J i , π i ) X,L Sample transition, scoring, resuming step 1 until GS is reached 4. | PAGE 6 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei | March 20-24, 2017

  7. ROLE OF THE MOMENTS OF INERTIA CEA | 10 AVRIL 2012 | PAGE 7 31 MAI 2017

  8. ROLE OF MOMENTS OF INERTIA IN MODEL INITIAL PARAMETERS FIFRELIN adjusted parameters: R T min R T max (temperature law) − ( J + 1 / 2) 2 σ L , σ H Spin cutoff used for sampling initial spin states P ( J ) = J + 1 / 2 2 σ 2 e (identical for all fragmentations) σ 2 k (ratio of moment of inertia to rigid body value) E rot = J ( J + 1) 2 kI rigid r a U σ 2 = I rigid I is not involved only in rotation energy � spherical a ˜ a « However, observations from microscopic level density studies show that the quantity σ 2 /t is not constant, but exhibits marked shell effects similar to the level density parameter a. » (RIPL3, Capote et al. Nuclear Data Sheets (2009) ) Replacing I in spin cutoff expressions must be done with care (don’t double-count � shell effect) 31 MAI 2017 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei | March 20-24, 2017 | PAGE 8

  9. Moment of Inertia 2 I/ ¯ h 100 200 300 0 *Moller et al., Atomic Data and Nuclear Data Tables, 59 (1995) Ti-42 Ti-48 Fe-60 Ni-56 Cranking (Inglis-Belyaev) model using FRDM* microscopic model Irrotational flow Rigid body Ni-58 Ni-62 I crank Zn-62 I irrot I rigid Exp Zn-68 Zn-70 Ge-70 Se-74 Sr-88 INERTIA CLASSICAL AND SEMI-CLASSICAL MOMENTS OF Zr-92 Mo-92 Mo-96 Ru-96 Cd-106 Cd-110 Cd-112 I rigid = 2 Sn-116 Sn-122 Te-110 Te-120 Te-122 Te-124 I irrot = 9 Te-128 Xe-120 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei | March 20-24, 2017 Xe-122 Xe-124 Xe-126 Xe-134 fragments” “fission Ba-122 Ba-124 Ba-126 5 MR 2 (1 + 0 . 31 β 2 + 0 . 44 β 2 Ba-128 Quasi-particle energy and level occupations from BCS equations Ba-130 Ba-134 Ba-136 Ce-126 8 π AMR 2 β 2 Ce-128 Ce-130 Ce-132 Ce-140 Ce-142 Ce-152 Nd-134 Nd-142 Single-particle wave-functions from FRDM Nd-144 Nd-152 Nd-154 Nd-156 Sm-142 Sm-154 Sm-156 Gd-154 Gd-156 Gd-158 Gd-160 2 Gd-164 Dy-156 Dy-158 Dy-160 Dy-162 Dy-164 Dy-166 Er-162 Er-164 Er-166 Er-168 Er-170 Yb-164 Yb-166 Yb-168 Yb-170 rare-earths Yb-172 Yb-174 Yb-176 Yb-178 Hf-170 Hf-172 Hf-174 Hf-176 2 + ... ) Hf-178 Hf-180 Hf-182 W-176 W-178 W-180 W-182 W-184 I irrot ⌧ I rigid W-186 Th-224 Th-226 Th-228 Th-230 Th-232 Th-234 U-230 actinides U-232 U-234 U-236 U-238 U-240 Pu-236 | PAGE 9 Pu-238 Pu-240 Pu-242 Pu-244 Pu-246 Cm-242 Cm-244 Cm-246 Cm-248 Cf-248 Cf-250 Cf-252 Fm-254

  10. IMPACT ON FISSION OBSERVABLES Only rotational energy modified, Cranking used with k=2, Application to 252 Cf(sf) CEA | 10 AVRIL 2012 | PAGE 10 31 MAI 2017

  11. SAW TOOTH 31 MAI 2017 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei | March 20-24, 2017 | PAGE 11

  12. AVERAGE NEUTRON ENERGY IN CM 31 MAI 2017 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei | March 20-24, 2017 | PAGE 12

  13. AVERAGE NEUTRON ENERGY IN CM rigid cranking rigid Stronger Z -dependency in the A =120-140 and A=85-95 regions for the cranking than the rigid body cranking 31 MAI 2017 CEA | 10 AVRIL 2012 | PAGE 13

  14. GAMMA SPECTRUM (1/2) 31 MAI 2017 CEA | 10 AVRIL 2012 | PAGE 14

  15. GAMMA SPECTRUM (2/2) 31 MAI 2017 CEA | 10 AVRIL 2012 | PAGE 15

  16. CONCLUSIONS The moment of inertia is involved in many aspect in de-excitation models. The shell structure bared by the cranking-based moments of inertia can significantly impact fission observables. Effect on spin cutoffs must be investigated with care as remaining parameters used in systematics have been obtained with rigid-body models. 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei | March 20-24, 2017 | PAGE 16

  17. I rigid = 2 5 MR 2 (1 + 0 . 31 β 2 + 0 . 44 β 2 2 + ... ) Thank you for your attention Commissariat à l’énergie atomique et aux énergies alternatives DEN Centre de Saclay | 91191 Gif-sur-Yvette Cedex DER T. +33 (0)1 XX XX XX XX | F. +33 (0)1 XX XX XX XX SPRC Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend