quantum binding in newton potential a source for dark
play

Quantum Binding in Newton Potential: a Source for Dark Energy? T. - PowerPoint PPT Presentation

Nonrelativistic: Madelung fluid and Fisher entropy Spec. Rel.: off mass-shell non-plane-wave Gen. Rel.: energy-momentum with quantum binding Consequences in Approximate Numbers Quantum Binding in Newton Potential: a Source for Dark Energy? T.


  1. Nonrelativistic: Madelung fluid and Fisher entropy Spec. Rel.: off mass-shell non-plane-wave Gen. Rel.: energy-momentum with quantum binding Consequences in Approximate Numbers Quantum Binding in Newton Potential: a Source for Dark Energy? T. S. Biró, P . Ván: Foundations of Phys. 45 (2015) 1465 . Ván 1 T.S. Biró, P 1 Heavy Ion Research Group MTA Research Centre for Physics, Budapest August 27, 2018 Talk given by T.S.Biró at Mátraháza, Sept. 5. 2018. Biro, Ván QGR in Madelung Variables 1 / 39

  2. Nonrelativistic: Madelung fluid and Fisher entropy Spec. Rel.: off mass-shell non-plane-wave Gen. Rel.: energy-momentum with quantum binding Consequences in Approximate Numbers Dark Energy 75 % of large scale universe Can it be related to dark matter? Can it be quantum gravity? Can it be vacuum polarization, Casimir energy? Can it be a more subtle quantum effect? Present talk: couple Einstein to Schrödinger/Madelung eqs Biro, Ván QGR in Madelung Variables 2 / 39

  3. Nonrelativistic: Madelung fluid and Fisher entropy Spec. Rel.: off mass-shell non-plane-wave Gen. Rel.: energy-momentum with quantum binding Consequences in Approximate Numbers Outline Nonrelativistic: Madelung fluid and Fisher entropy 1 Spec. Rel.: off mass-shell non-plane-wave 2 Gen. Rel.: energy-momentum with quantum binding 3 Consequences in Approximate Numbers 4 Biro, Ván QGR in Madelung Variables 3 / 39

  4. Nonrelativistic: Madelung fluid and Fisher entropy Schrödinger eq. with Madelung var.-s Spec. Rel.: off mass-shell non-plane-wave Schrödinger eq. from action principle Gen. Rel.: energy-momentum with quantum binding The Madelung fluid Consequences in Approximate Numbers Outline Nonrelativistic: Madelung fluid and Fisher entropy 1 Schrödinger eq. with Madelung var.-s Schrödinger eq. from action principle The Madelung fluid Spec. Rel.: off mass-shell non-plane-wave 2 Gen. Rel.: energy-momentum with quantum binding 3 Consequences in Approximate Numbers 4 Biro, Ván QGR in Madelung Variables 4 / 39

  5. Nonrelativistic: Madelung fluid and Fisher entropy Schrödinger eq. with Madelung var.-s Spec. Rel.: off mass-shell non-plane-wave Schrödinger eq. from action principle Gen. Rel.: energy-momentum with quantum binding The Madelung fluid Consequences in Approximate Numbers Schrödinger with Madelung − � 2 2 m ∇ 2 ϕ + V ( x ) ϕ = i � ∂ ∂ t ϕ (1) Ansatz i � α ϕ = R e Classical action and momentum ∂α ∂ t = − E , ∇ α = P (2) Biro, Ván QGR in Madelung Variables 4 / 39

  6. Nonrelativistic: Madelung fluid and Fisher entropy Schrödinger eq. with Madelung var.-s Spec. Rel.: off mass-shell non-plane-wave Schrödinger eq. from action principle Gen. Rel.: energy-momentum with quantum binding The Madelung fluid Consequences in Approximate Numbers Logarithmic Derivatives � 1 � 1 ∂ ∂ R ∂ t − i � R ∇ R + i � ∂ t ϕ = � E ϕ, ∇ ϕ = � P ϕ (3) R Laplacian � � 2 � � ∇ R R + i � � ∇ R R + i ∇ 2 ϕ = ∇ � P + � P ϕ (4) Biro, Ván QGR in Madelung Variables 5 / 39

  7. Nonrelativistic: Madelung fluid and Fisher entropy Schrödinger eq. with Madelung var.-s Spec. Rel.: off mass-shell non-plane-wave Schrödinger eq. from action principle Gen. Rel.: energy-momentum with quantum binding The Madelung fluid Consequences in Approximate Numbers Real and Imaginary Part � � � 2 E = V − � 2 − P 2 � ∇ R ∇∇ R R + (5) � 2 2 m R ∂ t = − � 2 i � ∂ R i � ∇ P + 2 � R P · ∇ R (6) R 2 m � Biro, Ván QGR in Madelung Variables 6 / 39

  8. Nonrelativistic: Madelung fluid and Fisher entropy Schrödinger eq. with Madelung var.-s Spec. Rel.: off mass-shell non-plane-wave Schrödinger eq. from action principle Gen. Rel.: energy-momentum with quantum binding The Madelung fluid Consequences in Approximate Numbers Interpretation Energy = Classical + Quantum contributions P 2 � 2 ∇ 2 R 2 m + V − E = (7) 2 m R Mass density continuity m ∂ R 2 � R 2 P � + ∇ = 0 (8) ∂ t Biro, Ván QGR in Madelung Variables 7 / 39

  9. Nonrelativistic: Madelung fluid and Fisher entropy Schrödinger eq. with Madelung var.-s Spec. Rel.: off mass-shell non-plane-wave Schrödinger eq. from action principle Gen. Rel.: energy-momentum with quantum binding The Madelung fluid Consequences in Approximate Numbers Action Principle Variational Principle behind the Schrödinger equation ∂ t + |∇ S | 2 � � ∂ S � | ϕ | 2 d 3 x dt S = + V (9) 2 m i � S ”Boltzmannian” ansatz: ϕ = e Using this ansatz: ∂ t + � 2 � � � i ϕ ∗ ∂ϕ 2 m ∇ ϕ ∗ · ∇ ϕ + V ϕ ∗ ϕ d 3 x dt S = (10) Variation against ϕ ∗ delivers ∂ t − � 2 δ S ∂ϕ δϕ ∗ = � 2 m ∇ 2 ϕ + V ϕ = 0 (11) i Biro, Ván QGR in Madelung Variables 8 / 39

  10. Nonrelativistic: Madelung fluid and Fisher entropy Schrödinger eq. with Madelung var.-s Spec. Rel.: off mass-shell non-plane-wave Schrödinger eq. from action principle Gen. Rel.: energy-momentum with quantum binding The Madelung fluid Consequences in Approximate Numbers Action with Madelung Variables Split to Quantum + Classical parts � � � 2 � ( ∇ α ) 2 + V + ∂α �� 2 m ( ∇ R ) 2 + R 2 d 3 x dt S = (12) 2 m ∂ t Structure of Quantum Principle: S = � 2 ( quantum kinetic ) + R 2 ( classical Hamilton-Jakobi ) Path integral, tunneling: S = α − i � ln R Biro, Ván QGR in Madelung Variables 9 / 39

  11. Nonrelativistic: Madelung fluid and Fisher entropy Schrödinger eq. with Madelung var.-s Spec. Rel.: off mass-shell non-plane-wave Schrödinger eq. from action principle Gen. Rel.: energy-momentum with quantum binding The Madelung fluid Consequences in Approximate Numbers Madelung fluid density L d 3 xdt : � Canonical momenta from S = ∂ ∇ R = � 2 ∂ ∇ α = R 2 ∂ L Π α = ∂ L Π R = m ∇ R , m ∇ α, P R = ∂ L P α = ∂ L = R 2 = 0 , (13) ∂ ∂ R ∂ ∂α ∂ t ∂ t Continuity eq: ∂ P α + ∇ Π α = 0 ∂ t fluid density ρ = P α = R 2 . Biro, Ván QGR in Madelung Variables 10 / 39

  12. Nonrelativistic: Madelung fluid and Fisher entropy Schrödinger eq. with Madelung var.-s Spec. Rel.: off mass-shell non-plane-wave Schrödinger eq. from action principle Gen. Rel.: energy-momentum with quantum binding The Madelung fluid Consequences in Approximate Numbers Madelung current The ”classical” momentum defines a velocity as � P = m � v The continuity equation reads as ∂ρ ∂ t + � ∇ ( ρ� v ) = 0 . (14) Biro, Ván QGR in Madelung Variables 11 / 39

  13. Nonrelativistic: Madelung fluid and Fisher entropy Schrödinger eq. with Madelung var.-s Spec. Rel.: off mass-shell non-plane-wave Schrödinger eq. from action principle Gen. Rel.: energy-momentum with quantum binding The Madelung fluid Consequences in Approximate Numbers Bohm potential The quantum correction to the energy can be expressed as − � 2 ∇ 2 R = − � 2 � ∇ 2 ρ 2 ρ − ( ∇ ρ ) 2 � (15) 4 ρ 2 2 m R 2 m Biro, Ván QGR in Madelung Variables 12 / 39

  14. Nonrelativistic: Madelung fluid and Fisher entropy Schrödinger eq. with Madelung var.-s Spec. Rel.: off mass-shell non-plane-wave Schrödinger eq. from action principle Gen. Rel.: energy-momentum with quantum binding The Madelung fluid Consequences in Approximate Numbers Fisher entropy The action expressed by ρ becomes � � � � � ( ∇ ρ ) 2 � � P 2 ∂ρ ∂ t + � 2 � d 3 x dt S = 2 m + V − E ρ + 2 i 2 m 4 ρ (16) The last term in the quantum part looks like Fisher entropy. (The other is a total time derivative, can safely be neglected.) Biro, Ván QGR in Madelung Variables 13 / 39

  15. Nonrelativistic: Madelung fluid and Fisher entropy Klein-Gordon Lagrangian Spec. Rel.: off mass-shell non-plane-wave Action principle with Madelung variables Gen. Rel.: energy-momentum with quantum binding Noether currents: two energy conservations Consequences in Approximate Numbers Relativistic Madelung fluid Outline Nonrelativistic: Madelung fluid and Fisher entropy 1 Spec. Rel.: off mass-shell non-plane-wave 2 Klein-Gordon Lagrangian Action principle with Madelung variables Noether currents: two energy conservations Relativistic Madelung fluid Gen. Rel.: energy-momentum with quantum binding 3 Consequences in Approximate Numbers 4 Biro, Ván QGR in Madelung Variables 14 / 39

  16. Nonrelativistic: Madelung fluid and Fisher entropy Klein-Gordon Lagrangian Spec. Rel.: off mass-shell non-plane-wave Action principle with Madelung variables Gen. Rel.: energy-momentum with quantum binding Noether currents: two energy conservations Consequences in Approximate Numbers Relativistic Madelung fluid Quantum Lagrangian Lagrange density � 2 L = 1 2 ∂ i ψ ∗ ∂ i ψ − 1 � mc ψ ∗ ψ. (17) 2 � Action and other conventions � L d 4 x S = (18) with dx i = ( cdt , d � r ) . Physical units [ L ] = energy density / c = [ mc / L 3 ] . Biro, Ván QGR in Madelung Variables 14 / 39

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend