theoretical calculation of nuclear reactions of interest
play

Theoretical calculation of nuclear reactions of interest for Big - PowerPoint PPT Presentation

Theoretical calculation of nuclear reactions of interest for Big Bang Nucleosynthesis Candidate: Alex Gnech Advisors : Prof. Laura Elisa Marcucci (Univ. of Pisa) Prof. Michele Viviani (INFN Pisa) PhD thesis defense, April 23, 2020 1 Big


  1. Theoretical calculation of nuclear reactions of interest for Big Bang Nucleosynthesis Candidate: Alex Gnech Advisors : Prof. Laura Elisa Marcucci (Univ. of Pisa) Prof. Michele Viviani (INFN Pisa) PhD thesis defense, April 23, 2020 1

  2. Big Bang Nucleosynthesis • Predicts abundances of light elements • Network of reactions (cross-sections) ⇒ NO free parameters • Good agreement with Astrophysical Observations (A.O.) • A.O. more and more accurate ⇒ secondary products PDG, Phys. Rev. D 98 , 030001 (2018) 2

  3. Is there a 6 Li problem? • The 6 Li abundance in the BBN 6 Li / 7 Li ∼ 10 − 5 BBN prediction 6 Li / 7 Li ∼ 5 × 10 − 3 measured in halo-stars [1] ⇒ results under debate • Possible solutions [2] • systematic errors in A.O. • new physics (BSM) appearing • incomplete knowledge of reaction cross-sections [1] Asplund et al. , Astrophys J. 664 , 229 (2006) [2] Fields, Ann. Rev. Nucl. Part. Phys. 61 , 47 (2011) 3

  4. Motivations • Main uncertainties comes from α + d → 6 Li + γ [1] • Presence of non-thermal photons (BSM) ⇒ 7 Be + γ → p + 6 Li [2] ⇒ studied with p + 6 Li → 7 Be + γ • Both the reactions studied by the LUNA Collaboration[3] • Why theory? In the BBN energy range (50 < E < 400 keV) the measurements are very hard due to the Coulomb barrier The goal is the determination of the S-factor S ( E ) = E exp ( 2 πη ) σ ( E ) η = Z 1 Z 2 e 2 µ � 2 k [1] K.M. Nollett, et. al Phys. Rev. C 56 , 1144 (1997) [2] M. Kusukabe, et al. Phys. Rev. D 74 , 023526 (2006) [3] M. Anders, et al. Phys. Rev. Lett. 113 , 042501 (2014) 4

  5. Theoretical approaches • Phenomenological approach ( p + 6 Li → 7 Be + γ ) • Nucleus = system of “pointlike” clusters ( 7 Be = p + 6 Li) • “Phenomenological” interactions between clusters • “Model dependent” prediction • numerically “Fast” • Ab-initio approach ( α + d → 6 Li + γ ) • Nucleus = system of A bodies interacting among themselves and with external probes • Realistic nucleon-nucleon and nucleon-probe interactions • Exact method to solve the quantum-mechanical problem • “True” predictions • numerically “Slow” ⇒ We limit the study to 6 Li 5

  6. p + 6 Li → 7 Be + γ A.G. and L.E. Marcucci, Nucl. Phys. A 987 , 1 (2019) 6

  7. Nuclear Physics Motivations • Is there a low-energy resonance? [1] • Photon angular distributions (for LUNA) [1] J.J. He et al. . Phys. Lett. B 725 , 287 (2013) 7

  8. The p + 6 Li system in the cluster model • Clusters: p and 6 Li 185 • Intercluster potential (state dependent) 180 175 V ( r ) = − V 0 exp ( − a 0 r 2 ) δ [Deg] 4 S 3/2 170 165 2 S 1/2 Model Ref. [1] 160 • Elastic scattering data+bound 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 E p [MeV] state properties ⇒ cluster potential parameters J π Spin E (MeV) • Wave functions ⇒ prediction for 3 / 2 − GS 1/2 -5.6068 radiative capture 1 / 2 − FES 1/2 -5.1767 Dominated by E 1 transition σ ( E ) ∝ |� ψ 7 Be | E 1 | ψ p + 6 Li �| 2 8 [1] S.B. Dubovichenko et al. , Phys. Atom. Nucl. 74 , 1013 (2011)

  9. The S-factor S ( E ) = E exp ( 2 πη )( σ 3 / 2 ( E ) + σ 1 / 2 ( E )) Branching ratio 140 Bare Ref. [1] σ 1 / 2 ( E ) � 120 Ref. [2] � th . ≃ 33 % � σ 1 / 2 ( E ) + σ 3 / 2 ( E ) 100 S(E) [eV b] 80 σ 1 / 2 ( E ) � 60 � exp . ≃ 39 % � σ 1 / 2 ( E ) + σ 3 / 2 ( E ) 40 20 Internal structure of 6 Li is 0 0 0.2 0.4 0.6 0.8 1 missing! E cm [MeV] [1] S.K. Switkowski, et al. Nucl. Phys. A 331 , 50 (1979) [2] J.J. He et al. , Phys. Lett. B 725 , 287 (2013) 9

  10. The S-factor S ( E ) = E exp ( 2 πη )( S 2 3 / 2 σ 3 / 2 ( E ) + S 2 1 / 2 σ 1 / 2 ( E )) 140 Bare • S spectroscopic factor Final 120 Ref. [1] Ref. [2] 100 J π χ 2 χ 2 S J 0 / N S / N S(E) [eV b] 3 / 2 − 80 1.003 0.064 0.064 1 / 2 − 60 1.131 2.096 0.219 40 • Fitted on data of [1] 20 • Branching ratio well 0 0 0.2 0.4 0.6 0.8 1 reproduced E cm [MeV] [1] S.K. Switkowski, et al. Nucl. Phys. A 331 , 50 (1979) [2] J.J. He et al. , Phys. Lett. B 725 , 287 (2013) 10

  11. The “He et al. ” resonance YES! • “He et al. ” suggested the presence of a resonance 140 Bare J π = ( 1 / 2 , 3 / 2 ) + , E r = 195 MeV 4 S 3/2 res. 120 Ref. [1] Γ p = 50 keV. Ref. [2] 100 S(E) [eV b] • Can we add the resonance in our 80 model? 60 40 20 0 0.2 0.4 0.6 0.8 1 E cm [MeV] • σ ( E ) = S 2 3 / 2 σ 3 / 2 ( E ) + S 2 1 / 2 σ 1 / 2 ( E ) + S 2 res σ res ( E ) • S 0 ≃ S 1 ∼ 1 • S res = 0 . 011 ⇒ small % of S=3/2 in 7 Be BUT... 11

  12. The “He et al. ” resonance The 4 S 3 / 2 phase shift is NOT reproduced 180 160 140 120 δ [Deg] 100 4 S 3/2 80 60 40 no resonance 20 resonance Ref. [3] 0 0 0.2 0.4 0.6 0.8 1 E [MeV] We cannot add the resonance in our model [1] S.K. Switkowski, et al. Nucl. Phys. A 331 , 50 (1979) [2] J.J. He et al. , Phys. Lett. B 725 , 287 (2013) [3] S.B. Dubovichenko et al. , Phys. Atom. Nucl. 74 , 1013 (2011) 12

  13. LUNA experimental setup Il nuovo cimento 42C , 116 (2019) -Courtesy of T. Chillery (LUNA Coll.) • Not a 4 π detector • The yield (= N γ / N p ) must be corrected by � W ( θ, E ) = a k ( E ) P k ( cos θ ) k ≥ 1 • Angle detector/beam θ 0 ≃ 55 ◦ ⇒ P 2 ( cos θ 0 ) ≃ 0 13

  14. Photon angular distribution � W ( θ, E ) = a k ( E ) P k ( cos θ ) k ≥ 1 • a 1 and a 2 are the only significant coefficients • Dominated by the interference of E 1 (S-waves) and E 2 (P-waves) 1.5 1.5 This work This work Fit [1] Fit [1] 1.4 1.4 Ref. [1] Ref. [1] 1.3 1.3 1.2 1.2 a.u. a.u. 1.1 1.1 1 1 0.9 J π =3/2 - 0.9 J π =1/2 - 0.8 0.8 0.7 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 θ [deg] θ [deg] a 1 ∝ E 1 ( 2 S 3 / 2 ) × ( E 2 ( 2 P 1 / 2 ) − E 2 ( 2 P 3 / 2 )) ∼ 0 a 1 ∝ E 1 ( 2 S 3 / 2 ) × E 2 ( 2 P 3 / 2 ) [1] C.I. Tingwell, J. D. King and D.G. Sargood, Aust. J. Phys. 40 , 319 (1987) – E p = 0 . 5 MeV 14

  15. Final Yields 1x10 -12 1x10 -12 Yield [1/part] Yield [1/part] 1x10 -13 1x10 -13 DC->0, Wout DC->429, Wout DC->0, Win DC->429, Win 100 150 200 250 300 350 400 100 150 200 250 300 350 400 E p [keV] E p [keV] J π = 3 / 2 − J π = 1 / 2 − • Correction to the ground state negligible ( a 1 ∼ 0) • Correction to the first excited state ∼ 6 − 9 % [1] [1] Courtesy of R. Depalo (LUNA Coll.) 15

  16. Conclusions I • Calculation of the S-factor ⇒ nice agreement with the data • A resonance? ⇒ not possible in the cluster model • Photon angular distribution ⇒ Important correction to first excited state yields 16

  17. α + d → 6 Li + γ A.G., M. Viviani and L.E. Marcucci, arXiv:2004.05814 (2020) 17

  18. Nuclear Physics Motivations • 6 Li has an exotic structure • Weakly bound nucleus • Strong clusterization • Study of electromagnetic moments • Small and negative electric quadrupole moment • Asymptotic Normalization Coefficients ( ⇒ S-factor) • Dark matter search ⇒ CRESST Coll. 18

  19. Ab-initio approach • Which nuclear potential? • Which method to solve the Schrödinger Equation? 19

  20. Chiral interaction ( χ EFT) chiral symmetry QCD → χ EFT − − − − − − − − • Low Energy Theory ( Λ χ ∼ 1 GeV) • N , π as d.o.f. • high energy d.o.f. integrated out → Low Energy Constants • Perturbative expansion ( ∝ ( Q / Λ χ ) ν ) • Various phenomena in a consistent framework ( A.G. and M. Viviani, Time-reversal violation in light nuclei , PRC 101 , 024004 (2020). ) D.R. Entem, et al. Phys. Rev. C 96 , 024004 (2017) E. Epelbaum, et al. Phys. Rev. Lett. 115 , 122301 (2015) 20

  21. Nuclear chiral potential • Non-relativistic expansion • Regularization with a cutoff ( Λ C = 400 − 600 MeV) • LECs fitted to the NN experimental scattering data • The chiral convergence must be checked a posteriori D.R. Entem, et al. , Phys. Rev. C 96 , 024004 (2017) • Controlled theoretical uncertainties 21

  22. The Hyperspherical Harmonic method p 2 � � � i H = 2 M + V ( i , j ) + W ( i , j , k ) + . . . i i < j i < j < k Search for accurate solution of H Ψ = E Ψ • Variational approach • Expansion of Ψ on the basis of Hyperspherical Harmonic (HH) functions • [L.E. Marcucci, J. Dohet-Eraly, L. Girlanda, A.G., A. Kievsky, and M. Viviani, Front. Phys. 8 , 69 (2020)] • Applied for A = 3 , 4 bound and scattering states For A = 6 implemented from scratch 22

  23. The HH wave function • Jacobi vectors � ξ 1 , . . . , � ξ N ⇒ CoM completely decoupled • Hyperangular variables ρ = � 5 k = 1 ( ξ k ) 2 , Ω = { ˆ ξ k √ ξ i , φ i } , cos φ k = ξ 2 1 + ... + ξ 2 k � ∂ 2 � T = − � 2 ∂ρ − L 2 (Ω) ∂ρ 2 + D − 1 ∂ ρ 2 m ρ • Expansion on a base ⇒ Hyperspherical Harmonics (HH) L 2 (Ω) Y [ K ] (Ω) = K ( K + 13 ) Y [ K ] (Ω) • The variational wave function � � � ψ A = a l , [ K ] f l ( ρ ) Y [ K ] (Ω A − 1 ) χ S ⊗ χ T , l , [ K ] • Check convergence on K 23

  24. The HH wave function • Sum over the permutations ⇒ antisymmetrization • Transformation Coefficients (TC) Y [ K ] (Ω ′ ) = � K = K ′ a [ K ] , [ K ′ ] Y [ K ′ ] (Ω) [ K ′ ] • Sum over the permutations rewritten in terms of the transformation coefficients � (Ω perm ) = � perm Y KLSTJ [ α ′ ] a KLSTJ [ α ] , [ α ′ ] Y KLSTJ (Ω) [ α ′ ] [ α ] • Basis states are linearly dependent ⇒ orthogonalization procedure 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend