the vela x pulsar wind nebula through the eyes of h e s s
play

The Vela X pulsar wind nebula through the eyes of H.E.S.S. and Suzaku - PowerPoint PPT Presentation

The Vela X pulsar wind nebula through the eyes of H.E.S.S. and Suzaku L. Tibaldo, F. Aharonian P. Bordas, S. Caroff, J. A. Hinton, D. Khangulyan, H. Odaka, R. Tuffs, for the H.E.S.S. Collaboration Context Vela supernova remnant shell Puppis A


  1. The Vela X pulsar wind nebula through the eyes of H.E.S.S. and Suzaku L. Tibaldo, F. Aharonian P. Bordas, S. Caroff, J. A. Hinton, D. Khangulyan, H. Odaka, R. Tuffs, for the H.E.S.S. Collaboration

  2. Context Vela supernova remnant shell Puppis A supernova remnant ■ pulsar wind nebulae ▪ extreme particle accelerators ▪ contribute to CR e + /e - ? 1° ■ Vela X ▪ pulsar wind nebula of Vela pulsar (290 pc) ▪ bright emission > TeV ➡ spatially resolved study in X- Vela pulsar rays and gamma rays Vela X 408 MHz Vela X extended radio nebula 0.1-0.4 keV cocoon 0.4-2.4 keV L. Tibaldo, Vela X with H.E.S.S. and Suzaku , ICRC 2017 Busan 2 /11

  3. Observations ■ X-rays: Suzaku XIS ▪ 3 archival observations Pointing 0 - 60 ks ■ gamma rays: H.E.S.S. ▪ data accumulated from 2004 to Pointing 1- 61 ks 2016 ▪ 100 h livetime Pointing 2 - 18 ks L. Tibaldo, Vela X with H.E.S.S. and Suzaku , ICRC 2017 Busan 3 /11

  4. Spectral extraction regions ■ same regions for X-rays and gamma rays ■ exclude region around pulsar (3.6 arcmin, XIS PSF 95%) ▪ neutron star emission (thermal, magnetospheric) ▪ jet-torus structure brightest in X- rays/ not resolved in gamma rays ■ 0.3 pc to 5 pc from pulsar wind termination shock L. Tibaldo, Vela X with H.E.S.S. and Suzaku , ICRC 2017 Busan 4 /11

  5. Analysis ■ Suzaku XIS ▪ standard Suzaku tools ▪ E > 2.25 keV: exclude supernova ■ H.E.S.S. remnant ▪ two independent calibration, ▪ background from night Earth’s reconstruction, and event selection observations pipelines ▪ spectral model ▪ only data from 4 12-m telescopes, E > ▪ power law with interstellar absorption 0.6 TeV (uniform threshold) ▪ cosmic X-ray background ▪ residual background: ring method ▪ 10% systematic uncertainties + leakage (map), reflected-region method (spectra) ▪ spectral model from pulsar in pointing 0 ▪ power law (pointing 0) ▪ power law with exponential cutoff (pointing 1 and 2) ▪ systematic uncertainties: 20% (flux) + differences between pipelines L. Tibaldo, Vela X with H.E.S.S. and Suzaku , ICRC 2017 Busan 5 /11

  6. H.E.S.S. detection map H.E.S.S. 2017 Preliminary L. Tibaldo, Vela X with H.E.S.S. and Suzaku , ICRC 2017 Busan 6 /11

  7. Radiative modeling electrons 30 TeV to > 100 TeV ✓ E "✓ ◆ β # ◆ − α d N − E d E = A exp E 0 E co cosmic microwave background magnetic field (B) infrared radiation field (Popescu+ 2017) → synchrotron radiation in X-rays → inverse Compton in gamma rays ■ fit to multiwavelength spectral energy distributions (SEDs) ▪ Markov Chain Monte Carlo (MCMC) scan of parameters ▪ software package: naima (Zabalza+ 2015) L. Tibaldo, Vela X with H.E.S.S. and Suzaku , ICRC 2017 Busan 7 /11

  8. SEDs and radiative models H.E.S.S. 2017 Preliminary H.E.S.S. 2017 Preliminary ■ leptonic model naturally reproduces SEDs ■ X-rays: harder spectrum in H.E.S.S. 2017 Preliminary pointing 0? L. Tibaldo, Vela X with H.E.S.S. and Suzaku , ICRC 2017 Busan 8 /11

  9. Model parameters H.E.S.S. 2017 Preliminary H.E.S.S. 2017 Preliminary H.E.S.S. 2017 Preliminary H.E.S.S. 2017 Preliminary H.E.S.S. 2017 Preliminary L. Tibaldo, Vela X with H.E.S.S. and Suzaku , ICRC 2017 Busan 9 /11

  10. Magnetic field turbulence? synchrotron turbulent B (Kelner+ 2013) example: • α = 3/2 • B max = 100 × B RMS • C, B min → PDF normalized to 1, √ ⟨ B 2 ⟩ = B RMS synchrotron gamma → electrons PDF ( B ) = ( 1 � a ) δ ( B � B RMS )+ aCB � α H ( B � B min ) H ( B max � B ) . H.E.S.S. 2017 Preliminary H.E.S.S. 2017 Preliminary L. Tibaldo, Vela X with H.E.S.S. and Suzaku , ICRC 2017 Busan 10 /11

  11. Conclusions ■ H.E.S.S. + Suzaku → spatially-resolved constraints on electron spectrum and magnetic fields - minimal model assumptions ■ leptonic model naturally reproduces data ■ electron spectra and magnetic field strength remarkably uniform from 0.3 pc to 5 pc from pulsar wind termination shock ■ constrain turbulence of magnetic field ■ magnetic field > 5 µG ➡ 100 TeV electron cooling time < 4 kyr << 20-30 kyr (system/pulsar age) ➡ efficient particle acceleration/transport within cocoon ■ weak constraints on electron cutoff: requires better measurements > 10 TeV (CTA), X-rays > 10 keV ( NuStar ) L. Tibaldo, Vela X with H.E.S.S. and Suzaku , ICRC 2017 Busan 11 /11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend