the speed and decay of cosmic ray muons
play

The (Speed and) Decay of Cosmic-Ray Muons Jason Gross MIT - - PowerPoint PPT Presentation

The (Speed and) Decay of Cosmic-Ray Muons Jason Gross MIT - Department of Physics Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 1 / 30 Goals test relativity (time dilation) determine the mean lifetime of muons Jason Gross (8.13)


  1. The (Speed and) Decay of Cosmic-Ray Muons Jason Gross MIT - Department of Physics Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 1 / 30

  2. Goals test relativity (time dilation) determine the mean lifetime of muons Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 2 / 30

  3. Goals test relativity (time dilation) determine the mean lifetime of muons Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 2 / 30

  4. Muons elementary particle unit negative charge spin 1 / 2 unstable Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 3 / 30

  5. Why Muons? unstable long mean lifetime ( ≈ 2 . 2 µs) naturally abundant penetrating Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 4 / 30

  6. Why Muons? unstable long mean lifetime ( ≈ 2 . 2 µs) naturally abundant penetrating Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 4 / 30

  7. Why Muons? unstable long mean lifetime ( ≈ 2 . 2 µs) naturally abundant penetrating Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 4 / 30

  8. Why Muons? unstable long mean lifetime ( ≈ 2 . 2 µs) naturally abundant penetrating Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 4 / 30

  9. Why Muons? contact point between theory and reality (we can predict mean lifetime from Fermi β -decay, if we know the mass) Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 5 / 30

  10. Experimental Outline muons generated by cosmic-rays above 15 km capture muons in a block of plastic scintillator record arrival & decay events Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 6 / 30

  11. Experimental Outline muons generated by cosmic-rays above 15 km capture muons in a block of plastic scintillator record arrival & decay events Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 6 / 30

  12. Experimental Outline muons generated by cosmic-rays above 15 km capture muons in a block of plastic scintillator record arrival & decay events Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 6 / 30

  13. Expected Results N ( t ) = N 0 e − t /τ Expected Count Rate vs. Decay Time Counts t � Μ s � 2 4 6 8 10 Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 7 / 30

  14. Expected Results But only if there’s no noise! Expected Count Rate vs. Decay Time Counts t � Μ s � 2 4 6 8 10 Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 7 / 30

  15. Experimental Setup Constant Delay Line Fraction Time to Discriminator Coincidence High Amplitude Circuit Voltage Constant Converter Fraction Discriminator PMT PMT Multichannel Analyzer 11" Diameter x 12" High Plastic Scintillator Light Tight Box Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 8 / 30

  16. Muon Detection High Voltage PMT PMT 11" Diameter x 12" High Plastic Scintillator Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 9 / 30

  17. Noise Removal Constant Fraction Discriminator Coincidence High Circuit Voltage Constant Fraction Discriminator PMT PMT 11" Diameter x 12" High Plastic Scintillator Light Tight Box Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 10 / 30

  18. Noise Removal # Accidentals = Tn 1 n 2 ∆ t Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 11 / 30

  19. Noise Removal If n 1 = 10 4 s − 1 , n 2 = 2 · 10 4 s − 1 , T = 1 hour, ∆ t = 100 ns, Accidental Count vs. Apparent Time Accidentals t � Μ s � 2 4 6 8 10 Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 12 / 30

  20. Noise Removal If n 1 = 10 4 s − 1 , n 2 = 2 · 10 4 s − 1 , T = 1 hour, ∆ t = 100 ns, Accidental Count vs. Apparent Time Accidentals 72 000 72 000 72 000 72 000 72 000 72 000 72 000 t � Μ s � 2 4 6 8 10 Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 12 / 30

  21. Noise Removal If n 1 = 10 4 s − 1 , n 2 = 2 · 10 4 s − 1 , T = 1 hour, ∆ t = 100 ns, Accidental Count vs. Apparent Time Accidentals 70 000 60 000 50 000 40 000 30 000 20 000 10 000 t � Μ s � 0 2 4 6 8 10 Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 12 / 30

  22. Noise Removal Constant Fraction Discriminator Coincidence High Circuit Voltage Constant Fraction Discriminator PMT PMT 11" Diameter x 12" High Plastic Scintillator Light Tight Box Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 13 / 30

  23. Experimental Setup Constant Delay Line Fraction Time to Discriminator Coincidence High Amplitude Circuit Voltage Constant Converter Fraction Discriminator PMT PMT Multichannel Analyzer 11" Diameter x 12" High Plastic Scintillator Light Tight Box Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 14 / 30

  24. Experimental Setup Measured by TAC Delay Delay Start Stop Arrival times of pulses along the STOP input (red) and the START input (green) of the TAC. Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 15 / 30

  25. Experimental Setup arrival interval ≈ decay time Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 16 / 30

  26. Experimental Setup arrival interval ≈ 1 2 decay time Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 17 / 30

  27. Experimental Setup arrival interval ≫ decay time Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 18 / 30

  28. Experimental Setup Lifetime: ≈ 2 . 2 µs Arrival Rate: ≈ ( 0 . 2 ± 0 . 1 ) s − 1 Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 19 / 30

  29. Experimental Setup Constant Delay Line Fraction Time to Discriminator Coincidence High Amplitude Circuit Voltage Constant Converter Fraction Discriminator PMT PMT Multichannel Analyzer 11" Diameter x 12" High Plastic Scintillator Light Tight Box Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 20 / 30

  30. Time Calibration Time Calibration t � Μ s � t � � � 0.01 � 0.03 � Μ s � �� 0.0199 � 0.0002 � Μ s � � Bin � � 10 2 � 0.0037 Χ Ν 8 6 4 2 Bin � 100 200 300 400 500 Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 21 / 30

  31. Results Muon Decay � Counts vs. Time � Counts 50 Residuals 40 30 t � Counts � � 0.24 � 0.05 � � � 39.9 � 0.9 � � � 1.99 � 0.04 � Μ s 2 � 0.65 Χ Ν 20 10 Time � Μ s � 5 10 15 Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 22 / 30

  32. Results My Value: τ = ( 1 . 986 ± 0 . 042 ) µs Book Value: τ = 2 . 197 034 ( 21 ) µs My Value: m µ = ( 107 . 96 ± 0 . 46 ) MeV / c 2 Book Value: m µ = 105 . 658 366 68 ( 38 ) MeV / c 2 Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 23 / 30

  33. Sources of Error systematic: didn’t account for the delay in the cable, so all my times are shorter than they should be poor estimation of errors (least squares gives ( 2 . 30 ± 0 . 04 ) µs) not enough data to get an estimate of the accidentals (if I fit to ae − t /τ , I get ( 2 . 06 ± 0 . 04 ) µs) Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 24 / 30

  34. Sources of Error systematic: didn’t account for the delay in the cable, so all my times are shorter than they should be poor estimation of errors (least squares gives ( 2 . 30 ± 0 . 04 ) µs) not enough data to get an estimate of the accidentals (if I fit to ae − t /τ , I get ( 2 . 06 ± 0 . 04 ) µs) Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 24 / 30

  35. Sources of Error systematic: didn’t account for the delay in the cable, so all my times are shorter than they should be poor estimation of errors (least squares gives ( 2 . 30 ± 0 . 04 ) µs) not enough data to get an estimate of the accidentals (if I fit to ae − t /τ , I get ( 2 . 06 ± 0 . 04 ) µs) Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 24 / 30

  36. Testing Relativity: Muon Travel Time generated 10-15 km above sea level others’ experiments suggest most likely momentum is 1 GeV / c to go 10-15 km at this momentum (which corresponds to 0.994c) takes 30-50 µs (but if we throw away all of special relativity, then this momentum corresponds to 9.5c, and it only takes 5 µs) Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 25 / 30

  37. Testing Relativity: Muon Travel Time generated 10-15 km above sea level others’ experiments suggest most likely momentum is 1 GeV / c to go 10-15 km at this momentum (which corresponds to 0.994c) takes 30-50 µs (but if we throw away all of special relativity, then this momentum corresponds to 9.5c, and it only takes 5 µs) Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 25 / 30

  38. Testing Relativity: Muon Travel Time generated 10-15 km above sea level others’ experiments suggest most likely momentum is 1 GeV / c to go 10-15 km at this momentum (which corresponds to 0.994c) takes 30-50 µs (but if we throw away all of special relativity, then this momentum corresponds to 9.5c, and it only takes 5 µs) Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 25 / 30

  39. Testing Relativity Jason Gross (8.13) Cosmic-Ray Muons November 4, 2011 26 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend