the shannon mcmillan theorem aep for quantum sources and
play

The Shannon-McMillan theorem (AEP) for quantum sources and related - PowerPoint PPT Presentation

The Shannon-McMillan theorem (AEP) for quantum sources and related topics I.Bjelakovic, T.K., A. Szkola, R.Siegmund-Schultze Motivation Transfer of fundamental theorems of classical information theory to quantum information theory In


  1. The Shannon-McMillan theorem (AEP) for quantum sources and related topics I.Bjelakovic, T.K., A. Szkola, R.Siegmund-Schultze

  2. Motivation • Transfer of fundamental theorems of classical information theory to quantum information theory • In a wider context: how a quantum ergodic theory and quantum dynamical system theory looks like

  3. The classical Shannon-McMillan-(Breiman) theorem • Given ( Σ , µ , σ ), Σ sequence space over finite alphabet, µ ergodic measure, σ shift-transformation, Σ � x, x(n) = (x 1 , , x 2 , x 3 ,…, x n ) • a.s. for ergodic µ : the individual information rate equals the average information rate ( ) ( ) − µ   − log x n 1 ∑ ( ) ( ) = = µ µ   lim h lim w log w µ →∞ →∞ n n   n n ( ) n ∈Σ w • This is a law of large numbers under very mild assumptions

  4. Typical subspaces and data compression Reformulation in terms of typical subspaces: { } ( ) ⊂ Σ n there is a family of typical sets T s.t. n ( ) ⊃ T n T (filtration property) and n+1 n ( ) µ → T 1 and n 1 log #T → h and µ n n ( ) ( ) ( ) − −ε ∀ε > µ ∈ ≤ n h > ε µ 0 one ha s: w T e for n n n 0

  5. { } furthermore for any family B s.t. n 1 ( ) < limsup log #B h it follows that µ n n ( ) µ → B 0 ( strong converse ) n in other w or ds : to cover a positive fraction of the whole space one needs asymptot i ca lly nh µ e cylinder -sets of lengt n

  6. ( ) ( ) + Σ n 1 Σ n + − − T typical subspace T typical subspace n 1 n ( ) µ µ > − ε for : T 1 n n ( ) ( ) + + Σ Σ n 2 n 3 + − + − T typical subspace T typical subspace n 2 n 3

  7. Ap plication to da ta compression: ( ) { } n ∈ given a typical long symbol sequence x ,x ,.......,x 0,1 1 2 n 1 < Codeboo k : typical words of length , k k lo g n 2 h µ kh ⇒ µ � there are abou t 2 typical words Codebooksize n and kh bits needed to specify a word from the codebook µ Spl i tting : x ,x ,...,x x ,....,x ..............x ,... .,x ( ) + − + �� �� � �� �� � 1 2 k k 1 2k n k n 1 1 �� � ��� � code with kh bits code µ ��������� � ���������� � code n codewords k ( ) (only o n fr act io n of blocks does not belong to the codebook) n kh [ ] ⇒ ⋅ = ∈ nh bits needed to code the whole sequence ( h 0,1 ) µ µ µ k

  8. The quantum setting κ � A : matrix-a lgebra over Hilbert space H= C* ( -algebra) A : copy of A at site x x { } ∞ = = ⊗ � n A norm-closure of A : A x { } ∈ x 1,2,...,n n σ : shif t transformat ion ∞ ϕ : positive, normed, linear functional on A (me asure) ϕ ϕ = ϕ σ � nvari i an t : ϕ ϕ erg odi c : is extremal among the invar ia nt f unctiona ls

  9. ϕ = ϕ for : there is a density matrix D n n n A ( ) ( ) ϕ = = s.t. a tr D a and D tr D (consistency) + + n n n 1 n 1 ( t r partial trace with respect to site n+1 ) n+1 ( ) ( ) ϕ = − entro py : S tr D lo g D ( von Neuma nn ) n n n 1 ( ) ( ) ϕ = ϕ entropy rate : s lim S n →∞ n n ( ) β ε co v ering expo nent : : { } 1 ( ) ϕ > − ε n lim min log t rP : P project or fr om A s.t . P 1 →∞ n n

  10. The quantum Shannon-McMillan theorem (Ref.: Inventiones Mathematica, 2003) ϕ ∞ ⇒ Let be an ergodic state on A { } ∃ ∈ n family of orthogonal projectors Q A s.t.: n 1 ( ) ( ) ( ) ϕ → = ϕ i) Q 1 and lim log tr Q s n n →∞ n n { } < ⇒ ii ) for any sequence of minimal projectors p Q n n − 1log ( ) ( ) ϕ → ϕ p s n n { } ′ ∈ n ii i) for any seque n e c o f pr ojectors Q A s.t. n 1 ( ) ( ) ( ) ′ ′ < ϕ ⇒ ϕ → li m lo g tr Q s Q 0 n n →∞ n n

  11. Comments ν � • The theorem holds for - lattices as well • Covering exponent is for all ε > 0: β ( ε ) = s( φ ) • The typical projectors (subspaces) can be explicitly constructed from the eigenspaces of D n ( ) − ϕ ns corresponding to eigenvalues of order e • The relation between the typical subspaces for different n is still unclear • Extensions to other group actions are possible • The typical subspaces can be chosen to be universal (not depending on φ but only on s( φ )) due to a result by Kalchenkov

  12. History • Josza&Schumacher: typical subspace theorem for product states (Bernoulli case, 1996) • Petz&Mosonyi: weak version of the Shannon- McMillan under the assumption of complete ergodicity (2001) and strong form for Gibbs states (with Hiai, 1993) • Neshveyev&Størmer: Shannon-McMillan for finitely generated C*-algebras but only tracial states (2002) • Datta&Shuchov: Shannon-McMillan for spin lattices with restrictions on the interaction (2002)

  13. Extensions A pointwise variant (Shan non-McMillan-Brei man ): ϕ ∞ ⇒ Let be an ergodic state on A { } ∀ε > ∃ ∈ > ε n 0 family of orthogonal projectors Q A s.t. for n n( ) : ε n, ( ) ( ) 1 ( ) ϕ > − ε < ϕ + ε i ) Q 1 and li m lo g tr Q s ε ε n, n, →∞ n n { } < ⇒ ii ) for any s eq u ence of minimal projectors p Q ε n n, − 1log ( ) ( ) ϕ < ϕ − ε p s n n = i ii) R[tr (Q )] Q (her e R[.] is the range projector) ε ε n+1 n+1, n,

  14. • The relation between the typical projectors for different ε is unclear • For abelian algebras (classical case) the above theorem is equivalent to the Shannon-McMillan- Breiman theorem

  15. A theorem for the relative entropy (I.Bjelakovich, R.Siegmund-Schultze) ω τ R elative entropy of two states and on finite dimensional algebra: ( ) ( )  − ω ≤ τ  tr D log D log D for supp supp ( ) ω ω τ ω τ =  S , : ∞   otherwise Relative entropy rat e : ∞ ψ ϕ an invariant state and an invariant product stat e o n A 1 ( ) ( ) ψ ϕ = ψ ϕ ϕ = ϕ s , lim S , ( : | ) n n n n A →∞ n n

  16. Rel ative exponent : { } ( ) ( ) ( ) β ψ ϕ = ϕ ∈ ψ > − ε n , : min log Q :Q A , projector s.t. Q 1 ε ,n n n ∞ ψ ϕ ⇒ For an ergodic state and an invariant product state on A 1 ( ) ( ) β ψ ϕ = ψ ϕ ∀ε > l im , s , for 0 ε ,n →∞ n n { } ψ ⇒ equivalently for typical subspace pr oject ors Q of n ( ) ( ) ( ) ( ) ( ) ( ) − ψ ϕ +ε − ψ ϕ −ε ≤ ϕ ≤ > ε n s , n s , e Q e ; n n n

  17. Relative entropy typical and untypical subspaces ψ ϕ From point of view: From point of vi ew : ( ) ( ) ψ > −ε ( ) − ψ ϕ ϕ Q 1 ns , � Q e n n ψ ( ) ψ � Q T n n typical subspace for ψ ( ) ψ � Q T n n

  18. • Complete analogy to the classical case • The proof is similar to the one for the Shannon- McMillan theorem but more technical involved • New simple proof of the monotonicity of the relative entropy can be derived from this result • Starting point for developing a large deviation theory (Sanov’s theorem)

  19. Proof strategy Idea : want to u se abelian approximations to lift the classical results to the quantum case Natural c andida t e : algebra B generated by the eigenspace projectors n ϕ = ϕ of D (density matrix corresp ondi ng to : ) { } n n 1,..,n ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ A A ...... A A A ...... A ..... A A ...... A ������� ������� ������� ⊗ ⊗ ⊗ ⊂ ⊂ ⊂ n n n B A B A B A ������������ � ������������� � n n n ∞ m → B B n n ( ) ( ) ∞ ϕ σ B * B , , is an abelian syste m n σ σ ∞ * n corresponds to on A

  20. ( ) ( ) ( ) ∞ ϕ σ Σ µ σ B * B , , is isomorphic to a classical system , , n B n ( ) 1 1 ( ) ( ) ( ) ( ) ϕ ≤ ϕ σ = ≤ ϕ + ε B * s s h s n µ n n ( ) Σ µ σ What can be said about the ergodic properties of , , ? B n µ ϕ is ergodic under the assumption of complete ergodicity o f ( Pet z ) µ In the general case splits into at most k n ergodic co mpon ents . All components are isomorphic under some shift-power and have the same entropy. To prove this one needs an ergodic d ec omposition ( ) ∞ ϕ σ n theo rem fo r A , , :

  21. { } ( ) ( ) ∞ ϕ σ ≤ ≤ ϕ i n i) A , , splits into 1 k n ergodic components ≤ ≤ 1 i k ( ) ( ) ϕ = ϕ σ i i-1 � ii) k n and ( ) ( ) ( ) ( ) ( ) ϕ σ = ϕ σ = ϕ i j n n iii) s s ns finite size entropy estimation: ( ) 1 ( ) ( ) ( ) ∀η > → ∞ ⇒ ϕ ≤ ϕ ≤ ϕ + η i iv) 0 a nd n s S s n A n for almost every ergodic com ponen t Ne x s t t ep : combining the different levels of approximation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend