the real story of the film so far
play

The real story of the film so far... X a continuous random variable : - PowerPoint PPT Presentation

The real story of the film so far... X a continuous random variable : for all x , { X x } is an Mathematics for Informatics 4a event and P ( X = x ) = 0 (Some) continuous random variables have probability density functions f such that Jos e


  1. The real story of the film so far... X a continuous random variable : for all x , { X � x } is an Mathematics for Informatics 4a event and P ( X = x ) = 0 (Some) continuous random variables have probability density functions f such that Jos´ e Figueroa-O’Farrill � x � ∞ f ( x ) � 0 f ( x ) dx = 1 P ( X � x ) = f ( y ) dy − ∞ − ∞ F ( x ) = P ( X � x ) is the cumulative distribution function We have met several probability density functions: 1 uniform : f ( x ) = b − a for x ∈ [ a , b ] 2 π e −( x − µ ) 2 / 2 σ 2 1 Lecture 11 normal : f ( x ) = √ σ exponential : f ( x ) = λe − λx for x � 0 (has no memory!) 29 February 2012 � ∞ − ∞ xf ( x ) dx , and equals a + b 2 , µ and 1 The mean µ = λ for the above p.d.f.s, respectively. Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 1 / 24 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 2 / 24 Functions of a random variable Example (A gamma distribution) Let X be normally distributed with parameters µ = 0 and σ 2 . Let X be a continuous random variable with probability density function f What is the probability density function of Y = X 2 ? We start by calculating the cumulative distribution function Let g : R → R be a function; e.g., g ( x ) = x 2 F Y ( y ) = P ( Y � y ) , which is only nonzero for y > 0. Let Y = g ( X ) be defined by Y ( ω ) = g ( X ( ω )) P ( Y � y ) = P ( X 2 � y ) = P (− √ y � X � √ y ) Then for many functions g , Y is again a continuous random variable = P ( X � √ y ) − P ( X � − √ y ) It is possible to determine the probability density function of � √ y � − √ y 1 1 e − x 2 / 2 σ 2 dx − e − x 2 / 2 σ 2 dx Y , by first computing the (cumulative) distribution function = √ √ 2 π 2 π σ σ − ∞ − ∞ P ( Y � y ) Although one can derive some general formulae for certain The probability density function f Y ( y ) = F ′ Y ( y ) , whence by the kinds of functions g , it is perhaps better to do a couple of chain rule, examples 1 e − y/ 2 σ 2 1 f Y ( y ) = for y > 0 √ √ y 2 π σ This is a special case of the “gamma” distribution. Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 4 / 24 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 5 / 24

  2. Expectation of a function of a random variable Example (The log-normal distribution) As before, X is a continuous random variable with Let X be normally distributed with parameters µ and σ 2 . What is probability density function f X the probability density function of Y = e X ? Then the expectation value E ( Y ) of Y = g ( X ) is given by Let us calculate P ( Y � y ) , which is only nonzero for y > 0. � ∞ P ( Y � y ) = P ( e X � y ) E ( Y ) = E ( g ( X )) = g ( x ) f ( x ) dx , − ∞ = P ( X � log y ) � log y (assuming the integral exists) 1 e −( x − µ ) 2 / 2 σ 2 dx = √ For example, σ 2 π − ∞ � ∞ E ( X 2 ) = x 2 f ( x ) dx whence − ∞ 1 e −( log y − µ ) 2 / 2 σ 2 1 and � ∞ f Y ( y ) = for y > 0 √ y E ( e tX ) = e tx f ( x ) dx 2 π σ − ∞ (provided the integrals exist) Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 6 / 24 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 7 / 24 Variance of a continuous random variable Example (Variance of exponential distribution) Let X be a continuous random variables with mean µ = E ( X ) . Let X be exponentially distributed with parameter λ , so We define the variance of X by E ( X ) = 1 λ . Then Var ( X ) = E ( X 2 ) − µ 2 = E (( X − µ ) 2 ) � ∞ E ( X 2 ) = x 2 λe − λx dx The standard deviation is the (+ve) square-root of the 0 variance. � ∞ = λ d 2 e − λx dx Example (Variance of uniform distribution) dλ 2 0 Let X be uniformly distributed in [ a , b ] , so E ( X ) = 1 2 ( a + b ) . Then = λ d 2 1 λ = 2 dλ 2 λ 2 b � b � b 3 − a 3 3 x 3 1 x 2 � 3 ( a 2 + ab + b 2 ) E ( X 2 ) = = 1 = 1 b − adx = � whence 3 b − a b − a � Var ( X ) = E ( X 2 ) − µ 2 = 2 λ 2 − 1 λ 2 = 1 a � a λ 2 whence Var ( X ) = E ( X 2 ) − µ 2 = 1 3 ( a 2 + ab + b 2 ) − 1 4 ( a + b ) 2 = 1 12 ( a − b ) 2 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 8 / 24 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 9 / 24

  3. Moment generating functions Example (Variance of normal distribution) Let X be a continuous random variable with probability density Let X be normally distributed with parameters µ = E ( X ) and σ . function f . The moment generating function (m.g.f.) M X ( t ) � ∞ is defined by 1 e −( x − µ ) 2 / 2 σ 2 dx Var ( X ) = E (( X − µ ) 2 ) = ( x − µ ) 2 √ � ∞ 2 π σ − ∞ M X ( t ) = E ( e tX ) = e tx f ( x ) dx � ∞ 1 y 2 e − y 2 / 2 σ 2 dy ( y = x − µ ) = − ∞ √ 2 π σ − ∞ (for those values of t for which the integral converges) � ∞ σ 2 u 2 e − u 2 / 2 du ( u = y/σ ) = √ Example (M.g.f. for uniform distribution) 2 π − ∞ � ∞ = − σ 2 Let X be uniformly distributed in [ a , b ] . Then u d due − u 2 / 2 du √ 2 π − ∞ � b b = e tb − e ta � d e tx e tx � � ∞ = − σ 2 � � M X ( t ) = b − adx = � ue − u 2 / 2 � − e − u 2 / 2 � du t ( b − a ) t ( b − a ) √ a � a du 2 π − ∞ 6 ( a 2 + ab + b 2 ) t 2 + · · · = 1 + 1 2 ( a + b ) t + 1 � ∞ σ 2 e − u 2 / 2 du = σ 2 = √ 2 π 3 ( a 2 + ab + b 2 ) , as − ∞ whence E ( X ) = 1 2 ( a + b ) and E ( X 2 ) = 1 computed earlier. Thus σ is the standard deviation. Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 10 / 24 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 11 / 24 Example (M.g.f. for normal distribution) Example (M.g.f. for exponential distribution) Let X be normally distributed with mean µ and variance σ 2 . Let X be exponentially distributed with mean 1 λ . � ∞ 1 e tx e −( x − µ ) 2 / 2 σ 2 dx � ∞ M X ( t ) = √ e tx λe − λx dx M X ( t ) = 2 π σ − ∞ � ∞ 0 e tµ � ∞ e ty e − y 2 / 2 σ 2 dy = ( y = x − µ ) √ e −( λ − t ) x dx = λ 2 π σ − ∞ 0 � ∞ e tµ e −( y 2 − 2 σ 2 ty ) / 2 σ 2 dy λ = √ = 2 π σ − ∞ λ − t � ∞ = e tµ + 1 2 σ 2 t 2 1 e −( y − σ 2 t ) 2 / 2 σ 2 dy = √ 1 − t 2 π σ − ∞ λ � ∞ = e tµ + 1 2 σ 2 t 2 = 1 + 1 λt + 1 λ 2 t 2 + · · · e − u 2 / 2 σ 2 du ( u = y − σ 2 t ) √ 2 π σ − ∞ = e tµ + 1 2 σ 2 t 2 whence E ( X ) = 1 λ and E ( X 2 ) = 2 λ 2 as computed earlier. 2 ( σ 2 + µ 2 ) t 2 + · · · = 1 + µt + 1 2 ( µ 2 + σ 2 ) t 2 + · · · Notice that M X ( t ) = 1 + µt + 1 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 12 / 24 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 13 / 24

  4. Some properties of mean and variance Standardising the normal distribution Theorem Theorem Let X be a continuous random variable. Then provided that Let X be normally distributed with parameters µ and σ . Then E ( X ) and E ( X 2 ) exist, we have for all a , b ∈ R , Y = 1 σ ( X − µ ) has as p.d.f. a standard normal distribution. E ( aX + b ) = a E ( X ) + b 1 Var ( aX + b ) = a 2 Var ( X ) 2 Remark It follows from the previous theorem that Y has mean Proof. E ( Y ) = 1 1 σ ( E ( X ) − µ ) = 0 and variance Var ( Y ) = σ 2 Var ( X ) = 1, follows by linearity of integration: 1 just like the standard normal distribution. Moreover the � ∞ � ∞ � ∞ moment generating function E ( aX + b ) = ( ax + b ) f ( x ) dx = a xf ( x ) dx + b f ( x ) dx 2 t 2 , − ∞ − ∞ − ∞ 1 M Y ( t ) = E ( e t ( X − µ ) /σ ) = e − µt/σ M X ( t σ ) = e = a E ( X ) + b which is the moment generating function of the standard normal distribution. This makes the theorem plausible, but we wish to follows from Var ( Y ) = E (( Y − µ Y ) 2 ) with Y = aX + b 2 prove it. Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 14 / 24 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 15 / 24 Proof. Example (The standard error) We will instead show directly that Y has the cumulative Let X be normally distributed with mean µ and variance σ 2 . For distribution function of a standard normal distribution: which value of c > 0 is P ( | X − µ | � cσ ) = 0.5 ? This is the same c for which P ( | Y | � c ) = 0.5, where P ( Y � y ) = P ( 1 σ ( X − µ ) � y ) Y = 1 σ ( X − µ ) has a standard normal distribution: = P ( X � σy + µ ) � σy + µ � c 1 1 e −( x − µ ) 2 / 2 σ 2 dx e − y 2 / 2 dy = P ( | Y | � c ) = √ √ 2 π 2 π σ − ∞ − c � y � c 1 = 2 1 e − u 2 / 2 du e − y 2 / 2 dy ( u = 1 σ ( x − µ ) ) = √ √ 2 π 2 π 0 − ∞ � � c � 0 � = 2 1 e − y 2 / 2 dy whence P ( Y � y ) = Φ ( y ) . − √ 2 π − ∞ − ∞ The usefulness of this result is that if X is normally distributed, = 2 Φ ( c ) − 1 P ( | X − µ | � cσ ) = P ( | Y | � c ) Therefore P ( | Y | � c ) = 0.5 if and only if Φ ( c ) = 0.75. where c > 0 is some constant and Y = 1 σ ( X − µ ) . Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 16 / 24 Jos´ e Figueroa-O’Farrill mi4a (Probability) Lecture 11 17 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend