the performance of the atlas initial detector layout for
play

The performance of the ATLAS Initial detector layout for B-physics - PowerPoint PPT Presentation

The performance of the ATLAS Initial detector layout for B-physics channels B. Epp, V.M. Ghete, D. Kuhn, Y.J. Zhang Institute for Experimental Physics University of Innsbruck, Austria OPG FAKT, Weyer, September 2004 Introduction Purpose


  1. The performance of the ATLAS Initial detector layout for B-physics channels B. Epp, V.M. Ghete, D. Kuhn, Y.J. Zhang Institute for Experimental Physics University of Innsbruck, Austria ¨ OPG FAKT, Weyer, September 2004

  2. Introduction Purpose of this studies: • Inner Detector(ID) performance w.r.t. quantities relevant to B 0 s → D s π analysis ( D s → φπ , φ → K + K − ) • Validation of software in the ATLAS framework ATHENA • Validation of generation-simulation-reconstruction-analysis chain for: – Initial layout – Complete layout Various comparisons were performed: • one-step comparisons: change one step in the software chain and perform – comparison of different layouts – comparison of different versions of the reconstruction software • multi-step comparisons: more steps were different ¨ V . B . Epp ATLAS initial detector layout performance OPG FAKT, Sept 2004

  3. ATLAS Full Detector Inner Detector Electromagnetic and Hadronic Calorimeters Muon Detectors ¨ V . B . Epp ATLAS initial detector layout performance OPG FAKT, Sept 2004

  4. ATLAS Inner Detector ID Inner Detector (ID): • cylinder with barrel and end- cap parts • discrete semiconductor pixel and strip detectors • transition radiation tracker: straw-tubes interspersed with a radiator = e/π ⇒ separation • inside solenoid: 2 T magn. field Staged detector: = ⇒ Initial layout versus Complete Layout Detector part barrel end-cap Initial / Complete cylinders disks on each side Pixel Detectors 2 / 3 2 / 3 Semi-Conductor Tracker (SCT) 4 / 4 9 / 9 Transition Radiation Tracker (TRT) axial tubes C-Wheels: no/yes ¨ V . B . Epp ATLAS initial detector layout performance OPG FAKT, Sept 2004

  5. Software chain Software step Software release Event generator Pythia 6.205, with B-physics tuning 50k events Athena framework, software release 5.0.0 Detector simulation full detector: initial layout complete layout atlsim framework, software release 6.0.2 (via AFS) realistic, non-uniform magnetic field Pileup simulation atlsim framework, software release 7.0.2 ∼ L= 2 × 10 33 cm − 2 s − 1 min bias events with muon safety factor = 1 Reconstruction package xKalman++ with non-uniform magnetic field atrecon framework, software release 6.6.0 Athena, software release release 7.0.0 Analysis Combined Ntuples CTVMFT vertex fit package (uniform magnetic field) ¨ V . B . Epp ATLAS initial detector layout performance OPG FAKT, Sept 2004

  6. Definitions of quantities • φ , D s , B 0 s mass resolutions and peak positions: = ⇒ Fit core with a Gaussian function • B 0 s d xy transverse decay length: distance between interaction point and reconstructed B 0 s decay vertex projected onto the transverse plane = ⇒ Fit sum of two Gaussian functions, same mean value • B 0 s g -factor fractional resolution: ( g − g 0 ) /g 0 c · p B 0 B 0 � � � � g = M B 0 s / , g 0 = M B 0 s / c · p T s s T true = ⇒ Fit with a Gaussian function • B 0 s proper time: t = d xy g proper time resolution t − t 0 = ⇒ Fit sum of two Gaussian functions, same mean value Fits with sum of two Gaussian functions: For comparison, force for second sample the ratio from the first sample. ¨ V . B . Epp ATLAS initial detector layout performance OPG FAKT, Sept 2004

  7. Initial vs Complete layout: Atrecon rec., no pile-up Particle Characteristic Initial layout Complete layout Nominal mass (MeV) 1019.4 1019.4 φ Peak position (MeV) 1019 . 6 ± 0 . 0 1019 . 6 ± 0 . 0 Resolution (MeV) 3 . 8 ± 0 . 0 3 . 8 ± 0 . 0 Nominal mass (MeV) 1968.5 1968.5 D s Peak position (MeV) 1969 . 9 ± 0 . 1 1969 . 3 ± 0 . 1 Resolution (MeV) 15 . 4 ± 0 . 1 15 . 6 ± 0 . 1 Nominal mass (MeV) 5369.3 5369.3 B 0 Peak position (MeV) 5369 . 3 ± 0 . 7 5367 . 4 ± 0 . 7 s Resolution (MeV) 46 . 0 ± 0 . 6 46 . 4 ± 0 . 6 400 Entries / 0.01 GeV Initial Complete No deterioration of the mass resolutions for 300 the Initial layout w.r.t. Complete layout is seen. 200 100 0 5.2 5.4 5.6 M KK ππ [ GeV ] ¨ V . B . Epp ATLAS initial detector layout performance OPG FAKT, Sept 2004

  8. Initial vs Complete layout: Atrecon rec., no pile-up Distribution Characteristic Initial layout Complete layout Peak position ( µ m ) − 0 . 8 ± 1 . 5 1 . 5 ± 1 . 4 Fraction G 1 (%) 72 . 4 ± 2 . 2 idem d xy − d 0 Fraction G 2 (%) 27 . 6 ± 2 . 2 idem xy Resolution G 1 ( µ m ) 84 . 3 ± 2 . 4 86 . 4 ± 1 . 5 Resolution G 2 ( µ m ) 212 . 7 ± 9 . 1 195 . 9 ± 4 . 1 Peak position (fs) − 1 . 0 ± 1 . 3 0 . 4 ± 1 . 3 Fraction G 1 (%) 63 . 1 ± 3 . 7 idem t − t 0 Fraction G 2 (%) 36 . 9 ± 3 . 7 idem Resolution G 1 (fs) 69 . 8 ± 3 . 2 73 . 2 ± 1 . 4 Resolution G 2 (fs) 157 . 5 ± 9 . 4 153 . 1 ± 2 . 9 400 Entries / 0.02 ps Initial Complete A slight tendency toward broader cores for 300 Complete (more dead material) and larger tails for Initial (missing pixel layer) 200 layout can be seen. 100 0 -0.4 -0.2 0 0.2 0.4 t-t 0 [ ps ] ¨ V . B . Epp ATLAS initial detector layout performance OPG FAKT, Sept 2004

  9. Initial vs Complete layout: Atrecon rec., no pile-up B 0 s → D s π Initial layout Complete layout Initial/Complete Simulated events 50000 50000 Reconstructed events σ = 46 . 0 MeV σ = 46 . 4 MeV 3 σ 5901 6269 2 σ 5542 5865 1 σ 4016 4270 Reconstructed events / 10 fb − 1 3 σ 3324 3547 93.7% 2 σ 3122 3304 94.5% 1 σ 2262 2405 94.1% 6% of events are lost for the Initial layout w.r.t. the Complete layout. Differences are due to the track reconstruction. Overall: no significant deterioration of quantities for Initial layout w.r.t Complete layout. ¨ V . B . Epp ATLAS initial detector layout performance OPG FAKT, Sept 2004

  10. Initial layout: Atrecon versus Athena rec., no pile-up B-physics conditions require a non-default tracking strategy for xKalman pattern recognition: • typical B-decay tracks at low p T • missing second pixel layer in Initial layout = ⇒ pattern recognition fails or finds track with wrong hit in b-layer Parameter settings for alternate xKalman tracking strategy: • silicon clusters per track ≥ 7 • no cut on hits in pixel layers (including b-layer) • minimum number of no-shared hits per track = 4 • selectivity of reconstruction = 4 • minimum number of TRT clusters per track = 9 • maximum number of holes = 22 ¨ V . B . Epp ATLAS initial detector layout performance OPG FAKT, Sept 2004

  11. Initial layout: Atrecon versus Athena rec., no pile-up Distribution Characteristic Atrecon Athena Peak position ( µ m ) − 0 . 8 ± 1 . 5 − 2 . 1 ± 1 . 6 Fraction G 1 (%) 72 . 4 ± 2 . 2 idem d xy − d 0 Fraction G 2 (%) 27 . 6 ± 2 . 2 idem xy Resolution G 1 ( µ m ) 84 . 3 ± 2 . 4 92 . 4 ± 1 . 6 Resolution G 2 ( µ m ) 212 . 7 ± 9 . 1 228 . 6 ± 4 . 7 ( g − g 0 ) /g 0 Peak pos. (%) 0 . 007 ± 0 . 011 − 0 . 013 ± 0 . 010 Resolution (%) 0 . 80 ± 0 . 01 0 . 81 ± 0 . 01 Peak position (fs) − 1 . 0 ± 1 . 3 − 1 . 3 ± 1 . 4 Fraction G 1 (%) 63 . 1 ± 3 . 7 idem t − t 0 Fraction G 2 (%) 36 . 9 ± 3 . 7 idem Resolution G 1 (fs) 69 . 8 ± 3 . 2 76 . 6 ± 1 . 4 Resolution G 2 (fs) 157 . 5 ± 9 . 4 174 . 4 ± 3 . 3 Relatively large difference in d xy and proper time t resolutions: = ⇒ Athena worse by ∼ 10% than Atrecon. Explanation after cross check using Athena software inside Atrecon: predominantly due to different way of computing errors associated to pixel cluster position (simplified error calculation used in Athena) ¨ V . B . Epp ATLAS initial detector layout performance OPG FAKT, Sept 2004

  12. Initial layout: Atrecon versus Athena rec., no pile-up B 0 s → D s π Atrecon Athena Atrecon/Athena Simulated events 50000 50000 Reconstructed events σ = 46 . 1 MeV σ = 46 . 4 MeV 3 σ 5901 6459 2 σ 5542 6038 1 σ 4016 4386 Reconstructed events / 10 fb − 1 3 σ 3324 3639 91.3% 2 σ 3122 3401 91.8% 1 σ 2262 2471 91.5% 400 Entries / 0.02 ps Atrecon rec. Athena rec. 9% less events in Atrecon, due to different way 300 of computing errors on the track parameters in Athena and Atrecon. 200 100 0 -0.4 -0.2 0 0.2 0.4 t-t 0 [ ps ] ¨ V . B . Epp ATLAS initial detector layout performance OPG FAKT, Sept 2004

  13. Initial layout - pile-up versus no pile-up All samples were reconstructed with Athena only. An influence of pile-up on individual track reconstruction is seen for the Λ 0 b → J/ψ ( µ + µ − )Λ 0 ( pπ − ) channel: the fraction of reconstructed tracks with an incorrect hit in b-layer is increasing (especially in the low p T region). Λ 0 b : σ single Gauss fit no pile-up pile-up pile-up/no pile-up mass (MeV) 26 . 9 ± 0 . 6 28 . 4 ± 0 . 8 105 . 6% proper-time (fs) 108 . 1 ± 2 . 2 115 . 2 ± 2 . 6 106 . 6% N pile rec / N nopile 94 . 0% rec Broader resolutions and degradation of efficiency of ∼ 6% for pile-up events. ( Λ fails to match J/ψ vertex) Similar effects are not seen on B 0 s mass, d xy or t -resolutions or number of reconstructed events for B 0 s pile-up events (possible explanation: secondary particles decay before b-layer). ¨ V . B . Epp ATLAS initial detector layout performance OPG FAKT, Sept 2004

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend