the muonic hydrogen lamb shift and the definition of the
play

THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON - PowerPoint PPT Presentation

THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda Universitat Autnoma de Barcelona hadron2011, 13th-17th Juny 2011 INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Precise measurements in


  1. THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda Universitat Autònoma de Barcelona hadron2011, 13th-17th Juny 2011

  2. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Precise measurements in atomic physics → Learning about hadron structure Hyperfine splitting (hydrogen atom): E exp HF = E ( n = 1 , s = 1 ) − E ( n = 1 , s = 0 ) ( s = total spin ) Nature (1972) ν HF = E HF = 1420 . 4057517667 ( 9 ) MHz ( 13 digits ) h THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  3. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Precise measurements in atomic physics → Learning about hadron structure Hyperfine splitting (hydrogen atom): E exp HF = E ( n = 1 , s = 1 ) − E ( n = 1 , s = 0 ) ( s = total spin ) Nature (1972) ν HF = E HF = 1420 . 4057517667 ( 9 ) MHz ( 13 digits ) h THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  4. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Precise measurements in atomic physics → Learning about hadron structure Hyperfine splitting (hydrogen atom): E exp HF = E ( n = 1 , s = 1 ) − E ( n = 1 , s = 0 ) ( s = total spin ) Nature (1972) ν HF = E HF = 1420 . 4057517667 ( 9 ) MHz ( 13 digits ) h THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  5. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Precise measurements in atomic physics → Learning about hadron structure Lamb shift (muonic hydrogen) E ≡ E ( 2 P 3 / 2 ( F = 2 )) − E ( 2 S 1 / 2 ( F = 1 )) PSI: R. Pohl et al., Nature vol. 466, p. 213 (2010) E exp = 206 . 2949 ( 32 ) meV E th = 209 . 9779 ( 49 ) − 5 . 2262 r 2 fm 2 + 0 . 0347 r 3 p p fm 3 meV = 205 . 984 meV using CODATA value r p = 0 . 8768 ( 69 ) fm. E exp − E th = 0 . 311 meV New proposed value: r p = 0 . 84184 ( 67 ) fm. 5 standard deviations!! E LO = 205 . 0074 = O ( m r α 3 ) THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  6. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Precise measurements in atomic physics → Learning about hadron structure Lamb shift (muonic hydrogen) E ≡ E ( 2 P 3 / 2 ( F = 2 )) − E ( 2 S 1 / 2 ( F = 1 )) PSI: R. Pohl et al., Nature vol. 466, p. 213 (2010) E exp = 206 . 2949 ( 32 ) meV E th = 209 . 9779 ( 49 ) − 5 . 2262 r 2 fm 2 + 0 . 0347 r 3 p p fm 3 meV = 205 . 984 meV using CODATA value r p = 0 . 8768 ( 69 ) fm. E exp − E th = 0 . 311 meV New proposed value: r p = 0 . 84184 ( 67 ) fm. 5 standard deviations!! E LO = 205 . 0074 = O ( m r α 3 ) THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  7. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Precise measurements in atomic physics → Learning about hadron structure Lamb shift (muonic hydrogen) E ≡ E ( 2 P 3 / 2 ( F = 2 )) − E ( 2 S 1 / 2 ( F = 1 )) PSI: R. Pohl et al., Nature vol. 466, p. 213 (2010) E exp = 206 . 2949 ( 32 ) meV E th = 209 . 9779 ( 49 ) − 5 . 2262 r 2 fm 2 + 0 . 0347 r 3 p p fm 3 meV = 205 . 984 meV using CODATA value r p = 0 . 8768 ( 69 ) fm. E exp − E th = 0 . 311 meV New proposed value: r p = 0 . 84184 ( 67 ) fm. 5 standard deviations!! E LO = 205 . 0074 = O ( m r α 3 ) THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  8. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Precise measurements in atomic physics → Learning about hadron structure Lamb shift (muonic hydrogen) E ≡ E ( 2 P 3 / 2 ( F = 2 )) − E ( 2 S 1 / 2 ( F = 1 )) PSI: R. Pohl et al., Nature vol. 466, p. 213 (2010) E exp = 206 . 2949 ( 32 ) meV E th = 209 . 9779 ( 49 ) − 5 . 2262 r 2 fm 2 + 0 . 0347 r 3 p p fm 3 meV = 205 . 984 meV using CODATA value r p = 0 . 8768 ( 69 ) fm. E exp − E th = 0 . 311 meV New proposed value: r p = 0 . 84184 ( 67 ) fm. 5 standard deviations!! E LO = 205 . 0074 = O ( m r α 3 ) THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  9. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Precise measurements in atomic physics → Learning about hadron structure Lamb shift (muonic hydrogen) E ≡ E ( 2 P 3 / 2 ( F = 2 )) − E ( 2 S 1 / 2 ( F = 1 )) PSI: R. Pohl et al., Nature vol. 466, p. 213 (2010) E exp = 206 . 2949 ( 32 ) meV E th = 209 . 9779 ( 49 ) − 5 . 2262 r 2 fm 2 + 0 . 0347 r 3 p p fm 3 meV = 205 . 984 meV using CODATA value r p = 0 . 8768 ( 69 ) fm. E exp − E th = 0 . 311 meV New proposed value: r p = 0 . 84184 ( 67 ) fm. 5 standard deviations!! E LO = 205 . 0074 = O ( m r α 3 ) THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  10. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Precise measurements in atomic physics → Learning about hadron structure Lamb shift (muonic hydrogen) E ≡ E ( 2 P 3 / 2 ( F = 2 )) − E ( 2 S 1 / 2 ( F = 1 )) PSI: R. Pohl et al., Nature vol. 466, p. 213 (2010) E exp = 206 . 2949 ( 32 ) meV E th = 209 . 9779 ( 49 ) − 5 . 2262 r 2 fm 2 + 0 . 0347 r 3 p p fm 3 meV = 205 . 984 meV using CODATA value r p = 0 . 8768 ( 69 ) fm. E exp − E th = 0 . 311 meV New proposed value: r p = 0 . 84184 ( 67 ) fm. 5 standard deviations!! E LO = 205 . 0074 = O ( m r α 3 ) THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  11. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Theoretical setup We use an effective field theory, Potential Non-Relativistic QED, which describes the muonic hydrogen dynamics and profits from the hierarchy m µ ≫ m µ α ≫ m µ α 2 i ∂ 0 − p 2  � � 2 m r + α ψ ( r ) = 0  r     E ∼ mv 2 + corrections to the potential potential NRQED + interaction with ultrasoft photons      Scales: m p ∼ Λ χ m µ m p m µ ∼ m π ∼ m r = m p + m µ m r α ∼ m e Expansion parameters, ratios between scales, mainly: m π m p ∼ m µ m p ∼ 1 9 m r α ∼ m r α 2 1 m r α ∼ α ∼ m r 137 Needed precision m r α 5 (heavy quarkonium precision) THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  12. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Theoretical setup We use an effective field theory, Potential Non-Relativistic QED, which describes the muonic hydrogen dynamics and profits from the hierarchy m µ ≫ m µ α ≫ m µ α 2 i ∂ 0 − p 2  � � 2 m r + α ψ ( r ) = 0  r     E ∼ mv 2 + corrections to the potential potential NRQED + interaction with ultrasoft photons      Scales: m p ∼ Λ χ m µ m p m µ ∼ m π ∼ m r = m p + m µ m r α ∼ m e Expansion parameters, ratios between scales, mainly: m π m p ∼ m µ m p ∼ 1 9 m r α ∼ m r α 2 1 m r α ∼ α ∼ m r 137 Needed precision m r α 5 (heavy quarkonium precision) THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  13. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Theoretical setup We use an effective field theory, Potential Non-Relativistic QED, which describes the muonic hydrogen dynamics and profits from the hierarchy m µ ≫ m µ α ≫ m µ α 2 i ∂ 0 − p 2  � � 2 m r + α ψ ( r ) = 0  r     E ∼ mv 2 + corrections to the potential potential NRQED + interaction with ultrasoft photons      Scales: m p ∼ Λ χ m µ m p m µ ∼ m π ∼ m r = m p + m µ m r α ∼ m e Expansion parameters, ratios between scales, mainly: m π m p ∼ m µ m p ∼ 1 9 m r α ∼ m r α 2 1 m r α ∼ α ∼ m r 137 Needed precision m r α 5 (heavy quarkonium precision) THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  14. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Theoretical setup We use an effective field theory, Potential Non-Relativistic QED, which describes the muonic hydrogen dynamics and profits from the hierarchy m µ ≫ m µ α ≫ m µ α 2 i ∂ 0 − p 2  � � 2 m r + α ψ ( r ) = 0  r     E ∼ mv 2 + corrections to the potential potential NRQED + interaction with ultrasoft photons      Scales: m p ∼ Λ χ m µ m p m µ ∼ m π ∼ m r = m p + m µ m r α ∼ m e Expansion parameters, ratios between scales, mainly: m π m p ∼ m µ m p ∼ 1 9 m r α ∼ m r α 2 1 m r α ∼ α ∼ m r 137 Needed precision m r α 5 (heavy quarkonium precision) THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

  15. INTRODUCTION/EXPERIMENT QED HADRONIC CONTRIBUTIONS CONCLUSIONS Theoretical setup � i ∂ 0 − p 2 � L pNRQED = d 3 r d 3 R dtS † ( r , R , t ) 2 m r � � d 3 r 1 4 F µν F µν , − V ( r , p , σ 1 , σ 2 ) + e r · E ( R , t ) S ( r , R , t ) − V ( r , p , σ 1 , σ 2 ) = V ( 0 ) ( r ) + V ( 1 ) ( r ) + V ( 2 ) ( r ) + . . . m µ m 2 µ V ( 0 ) ≡ − 4 π Z µ Z p α V ( k ) 1 ˜ k 2 , 1 α eff ( k ) = α 1 + Π( − k 2 ) , where Π( k 2 ) = α Π ( 1 ) ( k 2 ) + α 2 Π ( 2 ) ( k 2 ) + α 3 Π ( 3 ) ( k 2 ) + ... Z n µ Z m p α ( n , m ) α V ( k ) = α eff ( k )+ ( k ) = α eff ( k )+ δα ( k ) , δα ( k ) = O ( α 4 ) . � eff n , m = 0 n + m = even > 0 THE MUONIC HYDROGEN LAMB SHIFT AND THE DEFINITION OF THE PROTON RADIUS Antonio Pineda

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend