muonic news
play

Muonic news Muonic hydrogen and deuterium Randolf Pohl Randolf - PowerPoint PPT Presentation

Shrinking the Proton Exotic and not-so-exotic atoms for nuclear physics and fundamental constants Muonic news Muonic hydrogen and deuterium Randolf Pohl Randolf Pohl JGU, Mainz MPQ, Garching for the CREMA collaboration 1 Collaborators


  1. Muonic DEUTERIUM µ → Experiment: F=3/2 F=5/2 p + iso CODATA this value 2S 2P 10 1/2 3/2 signal [arb. units] RP et al. (CREMA), Science 353 , 417 (2016). ∆ E exp LS = 202 . 8785 ( 31 ) stat ( 14 ) syst meV 5 ⇒ r d = 2 . 12562 ( 13 ) exp ( 77 ) theo fm Theory: ∆ E theo LS = 228 . 7766 ( 10 ) meV ( QED ) + 1 . 7096 ( 200 ) meV ( TPE ) 0 − 100 0 100 ∆ ν (GHz) 3 ) r 2 d meV / fm 2 , − 6 . 1103 ( 8 µ → F=1/2 F=3/2 p + iso CODATA this value 2S 2P 1/2 3/2 signal [arb. units] Krauth, RP et al. , Ann. Phys. 366 , 168 (2016) F=1/2 → F=1/2 2S 2P 1/2 3/2 [arXiv 1506.01298] 6 based on papers and communication from Bacca, Barnea, Birse, Borie, Carlson, Eides, 4 Faustov, Friar, Gorchtein, Hernandez, Ivanov, Jentschura, Ji, Karshenboim, Korzinin, Krutov, 2 Martynenko, McGovern, Nevo Dinur, Pachucki, Shelyuto, Sick, Vanderhaeghen et al. 0 − 100 0 100 ∆ ν THANK YOU! (GHz) Randolf Pohl PhiPsi17 , 28 June 2017 13

  2. Deuteron charge radius H/D isotope shift: r 2 d − r 2 p = 3 . 82007 ( 65 ) fm 2 C.G. Parthey, RP et al. , PRL 104 , 233001 (2010) r d = 2 . 14130 ( 250 ) fm CODATA 2014 r p from µ H gives r d = 2 . 12771 ( 22 ) fm ← 5 . 4 σ from r p µ H + iso H/D(1S-2S) CODATA-2014 e-d scatt. 2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145 Deuteron charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 14

  3. Deuteron charge radius H/D isotope shift: r 2 d − r 2 p = 3 . 82007 ( 65 ) fm 2 C.G. Parthey, RP et al. , PRL 104 , 233001 (2010) r d = 2 . 14130 ( 250 ) fm CODATA 2014 r p from µ H gives r d = 2 . 12771 ( 22 ) fm ← 5 . 4 σ from r p µ H + iso H/D(1S-2S) CODATA-2014 ✛ ( 5 . 4 σ from µ H) ✲ e-d scatt. 2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145 Deuteron charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 14

  4. Deuteron charge radius H/D isotope shift: r 2 d − r 2 p = 3 . 82007 ( 65 ) fm 2 C.G. Parthey, RP et al. , PRL 104 , 233001 (2010) r d = 2 . 14130 ( 250 ) fm CODATA 2014 r p from µ H gives r d = 2 . 12771 ( 22 ) fm ← 5 . 4 σ from r p r d = 2 . 12562 ( 13 ) exp ( 77 ) theo fm RP et al. , Science 353 , 417 (2016) Muonic DEUTERIUM µ D µ H + iso H/D(1S-2S) CODATA-2014 ✛ ( 5 . 4 σ from µ H) ✲ e-d scatt. 2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145 Deuteron charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 14

  5. Deuteron charge radius H/D isotope shift: r 2 d − r 2 p = 3 . 82007 ( 65 ) fm 2 C.G. Parthey, RP et al. , PRL 104 , 233001 (2010) r d = 2 . 14130 ( 250 ) fm CODATA 2014 r p from µ H gives r d = 2 . 12771 ( 22 ) fm ← 5 . 4 σ from r p r d = 2 . 12562 ( 13 ) exp ( 77 ) theo fm RP et al. , Science 353 , 417 (2016) Muonic DEUTERIUM µ D another 6 σ discrepancy! ✛ ✲ µ H + iso H/D(1S-2S) CODATA-2014 ✛ ( 5 . 4 σ from µ H) ✲ e-d scatt. 2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145 Deuteron charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 14

  6. Conclusions µ p and µ d Pohl et al. , Nature 466, 213 (2010). Antognini et al. , Science 339, 417 (2013). Proton charge radius: r p = 0.84087 (39) fm Pohl et al. , Science 353, 669 (2016). Antognini et al. , Ann. Phys. 331, 127 (2013). Proton Zemach radius: R Z = 1.082 (37) fm Krauth et al. , Ann. Phys. 366, 168 (2016). Rydberg constant, using H(1S-2S): Pohl et al. , Metrologia 54, L1 (2017). R ∞ = 3 . 2898419602495 ( 10 ) radius ( 25 ) QED × 10 15 Hz / c Deuteron charge radius: r d = 2.12771 (22) fm using H/D(1S-2S) r p is 5 . 6 σ smaller than CODATA-2014 4 . 0 σ smaller than r p (H spectrosopy) r d is 5 . 4 σ smaller than CODATA-2014 (99% correlated with r p !) 3 . 5 σ smaller than r d (D spectrosopy) Proton and deuteron are consistently too small: h 2 3¯ r 2 d = r 2 struct + r 2 p + r 2 n + 4 m 2 p c 2 Randolf Pohl PhiPsi17 , 28 June 2017 15

  7. Conclusions µ p and µ d Pohl et al. , Nature 466, 213 (2010). Antognini et al. , Science 339, 417 (2013). Proton charge radius: r p = 0.84087 (39) fm Pohl et al. , Science 353, 669 (2016). Antognini et al. , Ann. Phys. 331, 127 (2013). Proton Zemach radius: R Z = 1.082 (37) fm Krauth et al. , Ann. Phys. 366, 168 (2016). Rydberg constant, using H(1S-2S): Pohl et al. , Metrologia 54, L1 (2017). R ∞ = 3 . 2898419602495 ( 10 ) radius ( 25 ) QED × 10 15 Hz / c Deuteron charge radius: r d = 2.12771 (22) fm using H/D(1S-2S) r p is 5 . 6 σ smaller than CODATA-2014 4 . 0 σ smaller than r p (H spectrosopy) r d is 5 . 4 σ smaller than CODATA-2014 (99% correlated with r p !) 3 . 5 σ smaller than r d (D spectrosopy) Proton and deuteron are consistently too small: h 2 3¯ r 2 d = r 2 struct + r 2 p + r 2 n + 4 m 2 p c 2 Randolf Pohl PhiPsi17 , 28 June 2017 15

  8. Muonic helium ions µ 4 He + µ 3 He + 2P 3/2 2P 3/2 F=1 2P F=2 2P 2P 1/2 F=0 F=1 2P 1/2 F=0 2S 1/2 F=1 2S 1/2 Randolf Pohl PhiPsi17 , 28 June 2017 16

  9. µ 4 He + ( 2 S 1 / 2 → 2 P 3 / 2 ) 1st µ 4 He-ion resonance at ∼ 812 nm wavelength -3 10 × 1 Events / Prompt 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 366 367 368 369 370 371 372 Frequency [THz] Randolf Pohl PhiPsi17 , 28 June 2017 17

  10. µ 4 He + ( 2 S 1 / 2 → 2 P 3 / 2 ) 1st µ 4 He-ion resonance at ∼ 812 nm wavelength ∆ E ( 2 S − 2 P ) = 1668 . 487 ( 14 ) meV ( QED ) -3 10 × − 106 . 358 ( 7 ) meV / fm 2 ·� r 2 � 1 Events / Prompt 0.9 0.8 + 6 . 761 ( 77 ) meV ( Friar ) 0.7 + 3 . 296 ( 189 ) meV ( polarizability ) 0.6 0.5 + 146 . 197 ( 12 ) meV ( fine structure ) 0.4 Diepold et al., 1606.05231 0.3 Thanks to the theorists! 0.2 0.1 0 expt’l accuracy: 17 GHz ≡ 0.066 meV 366 367 368 369 370 371 372 Frequency [THz] r( 4 He) = 1.68xxx ( 19) exp ( 58) theo fm PRELIMINARY vs. 1.68100 (400) fm from e-He scattering (plus the other transition µ 4 He + ( 2 S 1 / 2 → 2 P 1 / 2 ) ) Randolf Pohl PhiPsi17 , 28 June 2017 17

  11. 4 He charge radii PRELIMINARY This work Sick 2008 wrong µ 4 He Carboni 1977 Ottermann 1985 1.66 1.665 1.67 1.675 1.68 1.685 alpha charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 18

  12. µ 3 He + resonances signal [arb. units] transition #1 6 4 2 0 346.5 347 347.5 348 8 frequency [THz] signal [arb. units] transition #3 transition #2 6 4 2 ν ν 3 2 0 310 311 312 313 frequency [THz] Randolf Pohl PhiPsi17 , 28 June 2017 19

  13. µ 3 He + resonances signal [arb. units] ∆ E ( 2 S − 2 P 1 / 2 ) = transition #1 6 1644 . 347 ( 15 ) meV ( QED ) − 103 . 518 ( 10 ) meV / fm 2 ·� r 2 � 4 + 0 . 118 ( 3 ) meV ( radius ) + 15 . 300 ( 520 ) meV ( polarizability ) 2 Franke, Krauth et al., 1705.00352 Thanks to the theorists! 0 346.5 347 347.5 348 8 frequency [THz] signal [arb. units] transition #3 transition #2 expt’l accuracy: each ∼ 20 GHz 6 ⇒ 0.082/ √ 3 meV = 0.050 meV 4 r( 3 He) = 1.97xxx ( 12) exp (128) theo fm 2 PRELIMINARY ν ν 3 2 0 310 311 312 313 frequency [THz] Randolf Pohl PhiPsi17 , 28 June 2017 19

  14. 3 He charge radii PRELIMINARY This work Sick 2001 Amroun 1994 Ottermann 1985 Retzlaff 1984 Collard 1965 Dunn 1983 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2 helion charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 20

  15. Muonic summary Muonic hydrogen gives: Proton charge radius: r p = 0.84087 (39) fm 7 σ away from electronic average (CODATA: H, e-p scatt.) Deuteron charge radius: r d = 2 . 12771 ( 22 ) fm from µ H + H/D(1S-2S) Muonic deuterium: Deuteron charge radius: r d = 2 . 12562 ( 13 ) exp ( 77 ) theo fm consistent with muonic proton radius, but again 7 σ away from CODATA: 2 . 14240 ( 210 ) fm “Proton” Radius Puzzle is in fact “Z=1 Radius Puzzle” muonic helium-3 and -4 ions: No big discrepancy (PRELIMINARY) Randolf Pohl PhiPsi17 , 28 June 2017 21

  16. Muonic summary Muonic hydrogen gives: Proton charge radius: r p = 0.84087 (39) fm 7 σ away from electronic average (CODATA: H, e-p scatt.) Deuteron charge radius: r d = 2 . 12771 ( 22 ) fm from µ H + H/D(1S-2S) Muonic deuterium: Deuteron charge radius: r d = 2 . 12562 ( 13 ) exp ( 77 ) theo fm consistent with muonic proton radius, but again 7 σ away from CODATA: 2 . 14240 ( 210 ) fm “Proton” Radius Puzzle is in fact “Z=1 Radius Puzzle” muonic helium-3 and -4 ions: No big discrepancy (PRELIMINARY) Could ALL be solved if the Rydberg constant [ and hence the (electronic) proton radius ] was wrong. Plus ∼ 2 . 6 σ change in deuteron polarizabililty. Plus: accept dispersion fits of e-p scattering Or: BSM physics, e.g. Tucker-Smith & Yavin (2011) Randolf Pohl PhiPsi17 , 28 June 2017 21

  17. (Electronic) hydrogen. Randolf Pohl PhiPsi17 , 28 June 2017 22

  18. Hydrogen spectroscopy = 8171 . 636 ( 4 )+ 1 . 5645 � r 2 L 1 S ( r p ) p � MHz Lamb shift : ≃ L 1 S L nS n 3 8S 4S 3S 3D 2S 2P 1S RP et al. arXiv 1607.03165 Randolf Pohl PhiPsi17 , 28 June 2017 23

  19. Hydrogen spectroscopy = 8171 . 636 ( 4 )+ 1 . 5645 � r 2 L 1 S ( r p ) p � MHz Lamb shift : ≃ L 1 S L nS n 3 8S 4S 3S 3D F=2 2P 3/2 F=1 2S 2P classical Lamb shift: 2S-2P 2S-2P Lamb, Retherford 1946 Lundeen, Pipkin 1986 9910 MHz = 40 µ eV Hagley, Pipkin 1994 Hessels et al. , 201x F=1 2S 1/2 1058 MHz = 4 µ eV F=0 F=1 2P 1/2 F=0 1S RP et al. arXiv 1607.03165 Randolf Pohl PhiPsi17 , 28 June 2017 23

  20. Hydrogen spectroscopy = 8171 . 636 ( 4 )+ 1 . 5645 � r 2 L 1 S ( r p ) p � MHz Lamb shift : ≃ L 1 S L nS n 3 8S 4S 3S 3D 2S-4P 2S-8D 2S 2P E nS ≃ − R ∞ n 2 + L 1 S n 3 1S-2S 2 unknowns ⇒ 2 transitions • Rydberg constant R ∞ • Lamb shift L 1 S ⇒ r p 1S RP et al. arXiv 1607.03165 Randolf Pohl PhiPsi17 , 28 June 2017 23

  21. Hydrogen spectroscopy 2S 1/2 - 2P 1/2 2S 1/2 - 2P 1/2 2S 1/2 - 2P 3/2 1S-2S + 2S- 4S 1/2 1S-2S + 2S- 4D 5/2 1S-2S + 2S- 4P 1/2 1S-2S + 2S- 4P 3/2 1S-2S + 2S- 6S 1/2 1S-2S + 2S- 6D 5/2 1S-2S + 2S- 8S 1/2 1S-2S + 2S- 8D 3/2 1S-2S + 2S- 8D 5/2 1S-2S + 2S-12D 3/2 1S-2S + 2S-12D 5/2 1S-2S + 1S - 3S 1/2 0.8 0.85 0.9 0.95 1 proton charge radius (fm) Randolf Pohl PhiPsi17 , 28 June 2017 24

  22. Hydrogen spectroscopy 2S 1/2 - 2P 1/2 2S 1/2 - 2P 1/2 2S 1/2 - 2P 3/2 1S-2S + 2S- 4S 1/2 1S-2S + 2S- 4D 5/2 1S-2S + 2S- 4P 1/2 1S-2S + 2S- 4P 3/2 1S-2S + 2S- 6S 1/2 1S-2S + 2S- 6D 5/2 1S-2S + 2S- 8S 1/2 1S-2S + 2S- 8D 3/2 1S-2S + 2S- 8D 5/2 1S-2S + 2S-12D 3/2 µ p : 0.84087 +- 0.00039 fm 1S-2S + 2S-12D 5/2 1S-2S + 1S - 3S 1/2 0.8 0.85 0.9 0.95 1 proton charge radius (fm) Randolf Pohl PhiPsi17 , 28 June 2017 24

  23. Hydrogen spectroscopy 2S 1/2 - 2P 1/2 2S 1/2 - 2P 1/2 2S 1/2 - 2P 3/2 1S-2S + 2S- 4S 1/2 1S-2S + 2S- 4D 5/2 1S-2S + 2S- 4P 1/2 1S-2S + 2S- 4P 3/2 1S-2S + 2S- 6S 1/2 1S-2S + 2S- 6D 5/2 1S-2S + 2S- 8S 1/2 1S-2S + 2S- 8D 3/2 1S-2S + 2S- 8D 5/2 H avg = 0.8779 +- 0.0094 fm 1S-2S + 2S-12D 3/2 µ p : 0.84087 +- 0.00039 fm 1S-2S + 2S-12D 5/2 1S-2S + 1S - 3S 1/2 0.8 0.85 0.9 0.95 1 proton charge radius (fm) Randolf Pohl PhiPsi17 , 28 June 2017 24

  24. Hydrogen spectroscopy 2S 1/2 - 2P 1/2 2S 1/2 - 2P 1/2 2S 1/2 - 2P 3/2 1S-2S + 2S- 4S 1/2 1S-2S + 2S- 4D 5/2 1S-2S + 2S- 4P 1/2 1S-2S + 2S- 4P 3/2 1S-2S + 2S- 6S 1/2 1S-2S + 2S- 6D 5/2 1S-2S + 2S- 8S 1/2 1S-2S + 2S- 8D 3/2 1S-2S + 2S- 8D 5/2 H avg = 0.8779 +- 0.0094 fm 1S-2S + 2S-12D 3/2 µ p : 0.84087 +- 0.00039 fm 1S-2S + 2S-12D 5/2 1S-2S + 1S - 3S 1/2 0.8 0.85 0.9 0.95 1 proton charge radius (fm) Randolf Pohl PhiPsi17 , 28 June 2017 24

  25. Rydberg constant from hydrogen 2S – 4P resonance at 88 ± 0 . 5 ◦ and 90 ± 0 . 08 ◦ A. Beyer, L. Maisenbacher, K. Khabarova, C.G. Parthey, A. Matveev, J. Alnis, R. Pohl, N. Kolachevsky, Th. Udem and T.W. Hänsch C.G. Parthey, RP et al. , PRL 104 , 233001 (2010) Apparatus used for H/D(1S-2S) C.G. Parthey, RP et al. , PRL 107 , 203001 (2011) 486 nm at 90 ◦ + Retroreflector ⇒ Doppler-free 2S-4P excitation 1st oder Doppler vs. ac-Stark shift ∼ 2 . 5 kHz accuracy (vs. 15 kHz Yale, 1995) cryogenic H beam, optical excitation to 2S A. Beyer, RP et al. , Ann. d. Phys. 525 , 671 (2013) Randolf Pohl PhiPsi17 , 28 June 2017 25

  26. Quantum interference shifts Horbatsch & Hessels, PRA 82, 052519 (2010); PRA 84, 032508 (2011), PRA 86, 040501 (2012), etc. Sansonetti et al. , PRL 107, 023001 (2011); Brown et al. , PRA 87, 032504 (2013) Amaro, RP et al. , PRA 92, 022514 (2015); PRA 92, 062506 (2015) Randolf Pohl PhiPsi17 , 28 June 2017 26

  27. Quantum interference shifts 2 ω 1 − ω L + i γ 1 / 2 + ( � ( � d 1 · � E 0 ) � d 2 · � E 0 ) � d 2 e i ∆ φ � � d 1 P ( ω ) ∝ � � ω 2 − ω L + i γ 2 / 2 � � = Lorentzian(1) + Lorentzian(2) + cross-term (QI) Horbatsch & Hessels, PRA 82, 052519 (2010); PRA 84, 032508 (2011), PRA 86, 040501 (2012), etc. Sansonetti et al. , PRL 107, 023001 (2011); Brown et al. , PRA 87, 032504 (2013) Amaro, RP et al. , PRA 92, 022514 (2015); PRA 92, 062506 (2015) Randolf Pohl PhiPsi17 , 28 June 2017 26

  28. Quantum interference shifts 2 ω 1 − ω L + i γ 1 / 2 + ( � ( � d 1 · � E 0 ) � d 2 · � E 0 ) � d 2 e i ∆ φ � � d 1 P ( ω ) ∝ � � ω 2 − ω L + i γ 2 / 2 � � = Lorentzian(1) + Lorentzian(2) + cross-term (QI) Horbatsch & Hessels, PRA 82, 052519 (2010); PRA 84, 032508 (2011), PRA 86, 040501 (2012), etc. Sansonetti et al. , PRL 107, 023001 (2011); Brown et al. , PRA 87, 032504 (2013) Amaro, RP et al. , PRA 92, 022514 (2015); PRA 92, 062506 (2015) Randolf Pohl PhiPsi17 , 28 June 2017 26

  29. Quantum interference shifts 2S-4P setup Beyer, RP et al. , submitted (2016) Randolf Pohl PhiPsi17 , 28 June 2017 26

  30. Cross-damping A. Beyer, RP et al. , submitted. Randolf Pohl PhiPsi17 , 28 June 2017 27

  31. 2S – 4P results PRELIMINARY PRELIMINARY A. Beyer, RP et al. , submitted. Randolf Pohl PhiPsi17 , 28 June 2017 28

  32. 2S – 4P results PRELIMINARY PRELIMINARY Proton can be small in regular hydrogen, too! Proton radius puzzle is NOT “solved”. Our main systematics do NOT affect the previous measurements. Note: We split an asymmetric line to 10 − 4 ! A. Beyer, RP et al. , submitted. Randolf Pohl PhiPsi17 , 28 June 2017 28

  33. The nuclear chart 7 8 9 10 11 12 Be Be Be Be Be Be Proton Number Z 2.6460 (150) 2.5190 (120) 2.3600 (140) 2.4650 (150) 2.5020 (150) 6 9 11 7 8 Li Li Li Li Li 2.5890 (390) 2.4440 (420) 2.3390 (440) 2.2450 (460) 2.4820 (430) 3 4 6 8 He He He He 1.9730 (160) 1.6810 ( 40) 2.0680 (110) 1.9290 (260) 1 2 3 T H D electron scattering muonic atom spectroscopy 0.8775 (51) 2.1424 (21) 1.7550 (860) H/D: precision laser spectroscopy + theory (a lot!) n 6 He, 8 He, ...: laser spectroscopy of isotope shift Neutron number N Randolf Pohl PhiPsi17 , 28 June 2017 29

  34. The nuclear chart - new charge radii 7 7 8 8 9 9 10 10 11 11 12 12 Be Be Be Be Be Be Be Be Be Be Be Be Proton Number Z Proton Number Z 2.6460 (150) 2.6460 (150) 2.5190 (120) 2.5190 (120) 2.3600 (140) 2.4650 (150) 2.3600 (140) 2.4650 (150) 2.5020 (150) 2.5020 (150) 6 6 9 9 11 11 7 7 8 8 Li Li Li Li Li Li Li Li Li Li 2.5890 (390) 2.4440 (420) 2.5890 (390) 2.4440 (420) 2.3390 (440) 2.3390 (440) 2.2450 (460) 2.2450 (460) 2.4820 (430) 2.4820 (430) 3 3 4 4 6 6 8 8 He He He He He He He He * * * * 1.96xx ( 10) 1.67xx ( 5) 2.06xx ( 80) 1.9xxx (246) 1.9730 (160) 1.9730 (160) 1.6810 ( 40) 1.6810 ( 40) 2.0680 (110) 2.0680 (110) 1.9290 (260) 1.9290 (260) 1 1 2 2 3 3 T T H H D D electron scattering muonic atom spectroscopy 0.8409 ( 4) 2.1277 ( 2) 0.8775 (51) 0.8775 (51) 2.1424 (21) 2.1424 (21) 1.7550 (860) 1.7550 (860) H/D: precision laser spectroscopy + theory (a lot!) n n 6 He, 8 He, ...: laser spectroscopy of isotope shift laser spectroscopy of muonic atoms/ions * = preliminary Neutron number N Neutron number N Randolf Pohl PhiPsi17 , 28 June 2017 29

  35. Summary Results from muonic hydrogen and deuterium: Proton charge radius: r p = 0.84087 (39) fm Proton Zemach radius: R Z = 1.082 (37) fm Rydberg constant: R ∞ = 3 . 2898419602495 ( 10 ) r p ( 25 ) QED × 10 15 Hz / c Deuteron charge radius: r d = 2.12771 ( 22) fm from µ H + H/D(1S-2S) The “Proton radius puzzle” muonic helium-3 and -4: charge radius 10x more precise. No big discrepancy H(2S-4P) gives revised Rydberg ⇒ small r p PRELIMINARY New projects: 1S-HFS in muonic hydrogen / 3 He ⇐ PSI, J-PARC, RIKEN-RAL, ... LS in muonic Li, Be, B, T, ...; muonic high-Z, ... 1S-2S and 2S- n ℓ in Hydrogen/Deuterium/Tritium, He + He, H 2 , HD + ,... Positronium ≡ e + e − , Muonium ≡ µ + e − Electron scattering: H at lower Q 2 , D, He Muon scattering: MUSE @ PSI ... Randolf Pohl PhiPsi17 , 28 June 2017 30

  36. Future: Muonic The world’s most intense beam for low-energy µ − Randolf Pohl PhiPsi17 , 28 June 2017 31

  37. Future: Muonic The world’s most intense beam for low-energy µ − 1S-HFS in µ p , µ 3 He → Zemach (magnetic) radius goal R-16-02 (CREMA-3) µ p 2013 e-p, Mainz H, Volotka e-p, Friar H, Dupays 1 1.02 1.04 1.06 1.08 1.1 1.12 Proton Zemach radius R [fm] Z Randolf Pohl PhiPsi17 , 28 June 2017 31

  38. Future: Muonic The world’s most intense beam for low-energy µ − 1S-HFS in µ p , µ 3 He → Zemach (magnetic) radius goal R-16-02 (CREMA-3) µ p 2013 e-p, Mainz H, Volotka e-p, Friar H, Dupays 1 1.02 1.04 1.06 1.08 1.1 1.12 Proton Zemach radius R [fm] Z stop in µ g of (radioactive) material → charge radii of higher Z muX Collab @ PSI 187 75 Re prelim. 2016 data Randolf Pohl PhiPsi17 , 28 June 2017 31

  39. Future: Muonic The world’s most intense beam for low-energy µ − 1S-HFS in µ p , µ 3 He → Zemach (magnetic) radius goal R-16-02 (CREMA-3) µ p 2013 e-p, Mainz H, Volotka e-p, Friar H, Dupays 1 1.02 1.04 1.06 1.08 1.1 1.12 Proton Zemach radius R [fm] Z stop in µ g of (radioactive) material → charge radii of higher Z muX Collab @ PSI stop µ − in Penning trap 187 75 Re → charge radii of Li, Be, B, T prelim. 2016 data Randolf Pohl PhiPsi17 , 28 June 2017 31

  40. Future: Electronic Hydrogen apparatus in Garching Randolf Pohl PhiPsi17 , 28 June 2017 32

  41. Future: Electronic Hydrogen apparatus in Garching Tritium = “missing link” 3 4 He He * * 1.96xx ( 10) 1.67xx ( 5) 1.9730 (160) 1.6810 ( 40) 1 2 3 H T 0.8409 ( 4) 2.1277 ( 2) 0.8775 (51) 2.1424 (21) 1.7550 (860) r p = 0.8775( 51) fm → 0.8409( 4) fm r d = 2.1424( 21) fm → 2.1277( 2) fm r t = 1.7550(860) fm ⇒ potential improvement by 400! p = 3 . 82007 ( 65 ) fm 2 H/D(1S-2S) isotope shift to 15 Hz r 2 d − r 2 limit from theory : 1 kHz r t from T(1S-2S) to 10 kHz, later 1 kHz Randolf Pohl PhiPsi17 , 28 June 2017 32

  42. CREMA in 2009... Randolf Pohl PhiPsi17 , 28 June 2017 33

  43. ... and 2014 Randolf Pohl PhiPsi17 , 28 June 2017 34

  44. ... and 2017 Randolf Pohl PhiPsi17 , 28 June 2017 35

  45. Backup slides. Randolf Pohl PhiPsi17 , 28 June 2017 36

  46. Quantum interference shifts Horbatsch & Hessels, PRA 82, 052519 (2010); PRA 84, 032508 (2011), PRA 86, 040501 (2012), etc. Sansonetti et al. , PRL 107, 023001 (2011); Brown et al. , PRA 87, 032504 (2013) Amaro, RP et al. , PRA 92, 022514 (2015); PRA 92, 062506 (2015) Randolf Pohl PhiPsi17 , 28 June 2017 37

  47. Quantum interference shifts 2 ω 1 − ω L + i γ 1 / 2 + ( � ( � d 1 · � E 0 ) � d 2 · � E 0 ) � d 2 e i ∆ φ � � d 1 P ( ω ) ∝ � � ω 2 − ω L + i γ 2 / 2 � � = Lorentzian(1) + Lorentzian(2) + cross-term (QI) Horbatsch & Hessels, PRA 82, 052519 (2010); PRA 84, 032508 (2011), PRA 86, 040501 (2012), etc. Sansonetti et al. , PRL 107, 023001 (2011); Brown et al. , PRA 87, 032504 (2013) Amaro, RP et al. , PRA 92, 022514 (2015); PRA 92, 062506 (2015) Randolf Pohl PhiPsi17 , 28 June 2017 37

  48. Quantum interference shifts 2 ω 1 − ω L + i γ 1 / 2 + ( � ( � d 1 · � E 0 ) � d 2 · � E 0 ) � d 2 e i ∆ φ � � d 1 P ( ω ) ∝ � � ω 2 − ω L + i γ 2 / 2 � � = Lorentzian(1) + Lorentzian(2) + cross-term (QI) Horbatsch & Hessels, PRA 82, 052519 (2010); PRA 84, 032508 (2011), PRA 86, 040501 (2012), etc. Sansonetti et al. , PRL 107, 023001 (2011); Brown et al. , PRA 87, 032504 (2013) Amaro, RP et al. , PRA 92, 022514 (2015); PRA 92, 062506 (2015) Randolf Pohl PhiPsi17 , 28 June 2017 37

  49. Quantum interference shifts 2S-4P setup Beyer, RP et al. , submitted (2016) Randolf Pohl PhiPsi17 , 28 June 2017 37

  50. Cross-damping A. Beyer, RP et al. , submitted. Randolf Pohl PhiPsi17 , 28 June 2017 38

  51. 2S – 4P uncertainties A. Beyer, RP et al. , submitted. Randolf Pohl PhiPsi17 , 28 June 2017 39

  52. 2S – 4P results PRELIMINARY PRELIMINARY A. Beyer, RP et al. , submitted. Randolf Pohl PhiPsi17 , 28 June 2017 40

  53. 2S – 4P results PRELIMINARY PRELIMINARY Proton can be small in regular hydrogen, too! Proton radius puzzle is NOT “solved”. Our main systematics do NOT affect the previous measurements. Note: We split an asymmetric line to 10 − 4 ! A. Beyer, RP et al. , submitted. Randolf Pohl PhiPsi17 , 28 June 2017 40

  54. Hydrogen(-like) 1S-2S ✲ log(# atoms) Randolf Pohl PhiPsi17 , 28 June 2017 41

  55. Hydrogen(-like) 1S-2S Hydrogen apparatus in Garching 10 18 /s ✲ log(# atoms) Randolf Pohl PhiPsi17 , 28 June 2017 41

  56. Hydrogen(-like) 1S-2S Hydrogen apparatus in Garching ALPHA Antihydrogen 1S-2S 10 0 /s 10 18 /s ✲ log(# atoms) Randolf Pohl PhiPsi17 , 28 June 2017 41

  57. Hydrogen(-like) 1S-2S Hydrogen apparatus in Garching ALPHA Antihydrogen 1S-2S work here! 10 0 /s 10 9 /trial 10 18 /s ✲ log(# atoms) Randolf Pohl PhiPsi17 , 28 June 2017 41

  58. Towards T(1S-2S) I: Trapped H (BEC) PRL 70, 544 (1993), Walraven group Randolf Pohl PhiPsi17 , 28 June 2017 42

  59. Towards T(1S-2S) I: Trapped H (BEC) PRL 70, 544 (1993), Walraven group PRL 77, 255 (1996), Kleppner group Randolf Pohl PhiPsi17 , 28 June 2017 42

  60. Towards T(1S-2S) I: Trapped H (BEC) PRL 70, 544 (1993), Walraven group PRL 77, 255 (1996), Kleppner group PRL 81, 3811 (1998) Randolf Pohl PhiPsi17 , 28 June 2017 42

  61. Towards T(1S-2S) II: Matrix sublimation Rev. Sci. Instr. 86, 073109 (2015) C.L. Cesar (Kleppner @ MIT, 1990s) et al. Randolf Pohl PhiPsi17 , 28 June 2017 43

  62. The laser system Yb:YAG thin−disk laser Main components: cw TiSa laser Oscillator Oscillator 1030 nm Wave 1030 nm Verdi 200 W 200 W meter • Thin-disk laser 9 mJ 9 mJ 5 W Amplifier Amplifier cw TiSa fast response to detected µ − 500 W 500 W FP 708 nm 43 mJ 43 mJ • Frequency doubling 400 mW SHG SHG I / Cs 2 SHG • TiSa laser: 7 mJ frequency stabilized cw laser 1.5 mJ 23 mJ 515 nm 23 mJ injection seeded oscillator TiSa Osc. multipass amplifier TiSa Amp. 708 nm, 15 mJ • Raman cell 6 m monitoring H O µ 6 m µ 2 3 Stokes: 708 nm → 6 µ m 0.25 mJ 20 m λ calibration @ 6 µ m Raman cell Ge−filter • Target cavity µ 6 m cavity µ − A. Antognini, RP et. al. , Opt. Comm. 253, 362 (2005). Randolf Pohl PhiPsi17 , 28 June 2017 44

  63. The laser system Yb:YAG thin−disk laser cw TiSa laser Oscillator Oscillator Thin-disk laser 1030 nm Wave 1030 nm Verdi 200 W 200 W meter 9 mJ 9 mJ 5 W • Large pulse energy: 85 (160) mJ Amplifier Amplifier cw TiSa 500 W 500 W FP • Short trigger-to-pulse delay: � 400 ns 708 nm 43 mJ 43 mJ 400 mW • Random trigger SHG SHG I / Cs 2 • Pulse-to-pulse delays down to 2 ms SHG (rep. rate � 500 Hz) 7 mJ 1.5 mJ 23 mJ 515 nm 23 mJ TiSa Osc. • Each single µ − triggers the laser system TiSa Amp. 708 nm, 15 mJ • 2 S lifetime ≈ 1 µ s → short laser delay 6 m monitoring H O µ 6 m µ 2 0.25 mJ 20 m Raman cell Ge−filter A. Antognini, RP et. al. , µ 6 m cavity µ − IEEE J. Quant. Electr. 45, 993 (2009). Randolf Pohl PhiPsi17 , 28 June 2017 44

  64. The laser system Yb:YAG thin−disk laser MOPA TiSa laser: cw TiSa laser Oscillator Oscillator 1030 nm Wave 1030 nm Verdi 200 W 200 W cw laser, frequency stabilized meter 9 mJ 9 mJ 5 W - referenced to a stable FP cavity Amplifier Amplifier cw TiSa 500 W 500 W FP 708 nm 43 mJ - FP cavity calibrated with I 2 , Rb, Cs lines 43 mJ 400 mW SHG SHG I / Cs ν FP = N · FSR 2 SHG FSR = 1497 . 344 ( 6 ) MHz 7 mJ ν cw TiSa absolutely known to 30 MHz 1.5 mJ 23 mJ 515 nm 23 mJ Γ 2P − 2S = 18 . 6 GHz TiSa Osc. TiSa Amp. 708 nm, 15 mJ Seeded oscillator → ν pulsed = ν cw 6 m monitoring H O µ 6 m µ TiSa TiSa 2 0.25 mJ (frequency chirp ≤ 200 MHz) 20 m Raman cell Ge−filter Multipass amplifier (2f- configuration) gain=10 µ 6 m cavity µ − Randolf Pohl PhiPsi17 , 28 June 2017 44

  65. The laser system Yb:YAG thin−disk laser Raman cell: cw TiSa laser Oscillator Oscillator 1030 nm Wave 1030 nm Verdi 200 W 200 W µ 708 nm meter 6.02 m H 2 9 mJ 9 mJ 5 W Amplifier Amplifier cw TiSa 500 W 500 W FP 708 nm 43 mJ 43 mJ 400 mW st nd rd SHG 1 Stokes 2 Stokes 3 Stokes SHG I / Cs 2 SHG 708 nm 7 mJ µ 1.5 mJ 1.00 m 23 mJ 515 nm 23 mJ µ µ 1.72 m 6.02 m 4155 cm −1 v=1 TiSa Osc. H 2 TiSa Amp. 708 nm, 15 mJ v=0 6 m monitoring H O µ 6 m µ 2 0.25 mJ ν 6 µ m = ν 708nm − 3 · ¯ h ω vib 20 m Raman cell Ge−filter tunable ω vib ( p , T ) = const µ 6 m cavity µ − P . Rabinowitz et. al. , IEEE J. QE 22 , 797 (1986) Randolf Pohl PhiPsi17 , 28 June 2017 44

  66. The laser system Yb:YAG thin−disk laser cw TiSa laser 12 Oscillator Oscillator 190 mm 1030 nm Wave 1030 nm Verdi 200 W 200 W − µ meter 9 mJ 9 mJ 5 W 25 Amplifier Amplifier cw TiSa 500 W 500 W FP 708 nm α 43 mJ β 43 mJ Laser pulse 400 mW SHG SHG I / Cs 2 SHG 2 mm 3 mm Horiz. plane Vert. plane 7 mJ 1.5 mJ 23 mJ 515 nm 23 mJ Design: insensitive to misalignment TiSa Osc. Transverse illumination TiSa Amp. 708 nm, 15 mJ Large volume 6 m monitoring H O µ 6 m µ 2 Dielectric coating with R ≥ 99 . 9% (at 6 µ m ) 0.25 mJ 20 m → Light makes 1000 reflections Raman cell → Light is confined for τ =50 ns Ge−filter → 0.15 mJ saturates the 2 S − 2 P transition µ 6 m cavity µ − J. Vogelsang, RP et. al. , Opt. Expr. 22 , 13050 (2014) Randolf Pohl PhiPsi17 , 28 June 2017 44

  67. The laser system Yb:YAG thin−disk laser Water absorption cw TiSa laser 0.7 Oscillator Oscillator 1030 nm Wave 1030 nm Verdi 200 W 0.6 200 W meter 9 mJ 9 mJ 0.5 5 W Amplifier 0.4 Amplifier cw TiSa 500 W 500 W FP 708 nm 43 mJ 0.3 43 mJ 400 mW SHG 0.2 SHG I / Cs 2 0.1 SHG 0 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 wavenumber (cm -1 ) 7 mJ 1.5 mJ 0.7 23 mJ 515 nm 23 mJ scan region 0.6 TiSa Osc. 0.5 TiSa Amp. 708 nm, 15 mJ 0.4 0.3 0.2 6 m monitoring H O µ 6 m µ 2 0.25 mJ 0.1 20 m 0 1630 1640 1650 1660 1670 1680 1690 1700 wavenumber (cm -1 ) Raman cell Ge−filter • Vacuum tube for 6 µ m beam transport. µ 6 m cavity µ − • Direct frequency calibration at 6 µ m. Randolf Pohl PhiPsi17 , 28 June 2017 44

  68. Theory in µ d: TPE Deuteron structure contributions to the Lamb shift in muonic deuterium. µ µ d d µ µ d d Cancellation between elastic “Friar” (a.k.a. 3rd Zemach) terms and part of inelastic “polarizability” contributions. Friar & Payne, PRA 56, 5173 (1997) ; Pachucki, PRL 106, 193007 (2011) ; Friar, PRC 88, 034003 (2013) ; Hernandez et al. , PLB 736, 344 (2014) J.J. Krauth, RP et al. , Ann. Phys. 366 , 168 (2016) [1506.01298] Randolf Pohl PhiPsi17 , 28 June 2017 45

  69. Theory in µ d: TPE Table 3: Deuteron structure contributions to the Lamb shift in muonic deuterium. Values are in meV. Item Contribution Pachucki [55] Friar [60] Hernandez et al. [58] Pach.& Wienczek [65] Carlson et al. [64] Our choice N 3 LO † AV18 ZRA AV18 AV18 data value source Source 1 2 3 4 5 6 δ (0) p1 Dipole 1 . 910 δ 0 E 1 . 925 Leading C1 1 . 907 1 . 926 1 . 910 δ 0 E 1 . 9165 ± 0 . 0095 3-5 D 1 δ (0) p2 Rel. corr. to p1, longitudinal part − 0 . 035 δ R E − 0 . 037 Subleading C1 − 0 . 029 − 0 . 030 − 0 . 026 δ R E L δ (0) p3 Rel. corr. to p1, transverse part 0 . 012 0 . 013 T p4 Rel. corr. to p1, higher order 0 . 004 δ HO E sum Total rel. corr., p2+p3+p4 − 0 . 035 − 0 . 037 − 0 . 017 − 0 . 017 − 0 . 022 − 0 . 0195 ± 0 . 0025 3-5 p5 Coulomb distortion, leading − 0 . 255 δ C 1 E − 0 . 255 δ C 1 E p6 Coul. distortion, next order − 0 . 006 δ C 2 E − 0 . 006 δ C 2 E δ (0) sum Total Coulomb distortion, p5+p6 − 0 . 261 − 0 . 262 − 0 . 264 − 0 . 261 − 0 . 2625 ± 0 . 0015 3-5 C δ (2) p7 El. monopole excitation − 0 . 045 δ Q 0 E − 0 . 042 C0 − 0 . 042 − 0 . 041 − 0 . 042 δ Q 0 E R 2 δ (2) p8 El. dipole excitation 0 . 151 δ Q 1 E 0 . 137 Retarded C1 0 . 139 0 . 140 0 . 139 δ Q 1 E D 1 D 3 δ (2) p9 El. quadrupole excitation − 0 . 066 δ Q 2 E − 0 . 061 C2 − 0 . 061 − 0 . 061 − 0 . 061 δ Q 2 E Q sum Tot. nuclear excitation, p7+p8+p9 0 . 040 0 . 034 C0 + ret-C1 + C2 0 . 036 0 . 038 0 . 036 0 . 0360 ± 0 . 0020 2-5 δ (0) − 0 . 008 ♦ p10 Magnetic δ M E − 0 . 011 M1 − 0 . 008 − 0 . 007 − 0 . 008 δ M E − 0 . 0090 ± 0 . 0020 2-5 M SUM 1 Total nuclear (corrected) 1 . 646 1 . 648 1 . 656 1 . 676 1 . 655 1 . 6615 ± 0 . 0103 δ (2) 0 . 020 ♦ 0 . 021 ♦ ?? p11 Finite nucleon size 0 . 021 Retarded C1 f.s. 0 . 020 δ F S E NS δ (1) p12 n p charge correlation − 0 . 023 pn correl. f.s. − 0 . 017 − 0 . 017 − 0 . 018 δ F Z E np sum p11+p12 − 0 . 002 0 . 003 0 . 004 0 . 002 0 . 0010 ± 0 . 0030 2-5 � r 3 � pp � � p13 Proton elastic 3rd Zemach moment 0 . 030 0 . 0289 ± 0 . 0015 Eq.(13) 0 . 043(3) δ P E 0 . 043(3) δ P E (2) � � � p14 Proton inelastic polarizab. δ N 0 . 028(2)∆ E hadr 0 . 027(2) pol [64] 0 . 0280 ± 0 . 0020 6 p15 Neutron inelastic polarizab. 0 . 016(8) δ N E p16 Proton & neutron subtraction term − 0 . 0098 ± 0 . 0098 Eq.(15) sum Nucleon TPE, p13+p14+p15+p16 0 . 043(3) 0 . 030 0.027(2) 0 . 059(9) 0 . 0471 ± 0 . 0101 SUM 2 Total nucleon contrib. 0 . 043(3) 0 . 028 0.030(2) 0 . 061(9) 0 . 0476 ± 0 . 0105 Sum , published 1 . 680(16) 1 . 941(19) 1.690(20) 1 . 717(20) 2 . 011(740) Sum , corrected 1 . 697(19) 1.714(20) 1 . 707(20) 1 . 748(740) 1 . 7096 ± 0 . 0147 J.J. Krauth et al. , Ann. Phys. 366 , 168 (2016) [1506.01298] ∆ E TPE ( theo ) = 1 . 7096 ± 0 . 0200 meV ± 0 . 0034 meV vs. exp. uncertainty Randolf Pohl PhiPsi17 , 28 June 2017 45

  70. Theory in µ d: TPE using ∆ E theo r d = 2 . 12562 ( 13 ) exp ( 77 ) theo fm, TPE = 1 . 7096 ( 200 ) meV limited by deuteron structure (TPE) contributions to the µ d LS µ µ d d µ µ d d Cancellation between elastic “Friar” (a.k.a. 3rd Zemach) terms and part of inelastic “polarizability” contributions. Nucleon structure adds relevant contributions (and uncertainty). Friar & Payne, PRA 56, 5173 (1997) ; Pachucki, PRL 106, 193007 (2011) ; Friar, PRC 88, 034003 (2013) ; Hernandez et al. , PLB 736, 344 (2014) ; Pachucki & Wienczek, PRA 91, 040503(R) (2015) ; Carlson, Gorchtein, Vanderhaeghen, PRA 89, 022504 (2014) ; Birse & McGovern et al. J.J. Krauth, RP et al. , Ann. Phys. 366 , 168 (2016) [1506.01298] Randolf Pohl PhiPsi17 , 28 June 2017 46

  71. Theory in µ d: TPE Table 3: Deuteron structure contributions to the Lamb shift in muonic deuterium. Values are in meV. Item Contribution Pachucki [55] Friar [60] Hernandez et al. [58] Pach.& Wienczek [65] Carlson et al. [64] Our choice N 3 LO † AV18 ZRA AV18 AV18 data value source Source 1 2 3 4 5 6 δ (0) p1 Dipole 1 . 910 δ 0 E 1 . 925 Leading C1 1 . 907 1 . 926 1 . 910 δ 0 E 1 . 9165 ± 0 . 0095 3-5 D 1 δ (0) p2 Rel. corr. to p1, longitudinal part − 0 . 035 δ R E − 0 . 037 Subleading C1 − 0 . 029 − 0 . 030 − 0 . 026 δ R E L δ (0) p3 Rel. corr. to p1, transverse part 0 . 012 0 . 013 T p4 Rel. corr. to p1, higher order 0 . 004 δ HO E sum Total rel. corr., p2+p3+p4 − 0 . 035 − 0 . 037 − 0 . 017 − 0 . 017 − 0 . 022 − 0 . 0195 ± 0 . 0025 3-5 p5 Coulomb distortion, leading − 0 . 255 δ C 1 E − 0 . 255 δ C 1 E p6 Coul. distortion, next order − 0 . 006 δ C 2 E − 0 . 006 δ C 2 E δ (0) sum Total Coulomb distortion, p5+p6 − 0 . 261 − 0 . 262 − 0 . 264 − 0 . 261 − 0 . 2625 ± 0 . 0015 3-5 C δ (2) p7 El. monopole excitation − 0 . 045 δ Q 0 E − 0 . 042 C0 − 0 . 042 − 0 . 041 − 0 . 042 δ Q 0 E R 2 δ (2) p8 El. dipole excitation 0 . 151 δ Q 1 E 0 . 137 Retarded C1 0 . 139 0 . 140 0 . 139 δ Q 1 E D 1 D 3 δ (2) p9 El. quadrupole excitation − 0 . 066 δ Q 2 E − 0 . 061 C2 − 0 . 061 − 0 . 061 − 0 . 061 δ Q 2 E Q sum Tot. nuclear excitation, p7+p8+p9 0 . 040 0 . 034 C0 + ret-C1 + C2 0 . 036 0 . 038 0 . 036 0 . 0360 ± 0 . 0020 2-5 δ (0) − 0 . 008 ♦ p10 Magnetic δ M E − 0 . 011 M1 − 0 . 008 − 0 . 007 − 0 . 008 δ M E − 0 . 0090 ± 0 . 0020 2-5 M SUM 1 Total nuclear (corrected) 1 . 646 1 . 648 1 . 656 1 . 676 1 . 655 1 . 6615 ± 0 . 0103 δ (2) 0 . 020 ♦ 0 . 021 ♦ ?? p11 Finite nucleon size 0 . 021 Retarded C1 f.s. 0 . 020 δ F S E NS δ (1) p12 n p charge correlation − 0 . 023 pn correl. f.s. − 0 . 017 − 0 . 017 − 0 . 018 δ F Z E np sum p11+p12 − 0 . 002 0 . 003 0 . 004 0 . 002 0 . 0010 ± 0 . 0030 2-5 � r 3 � pp � � p13 Proton elastic 3rd Zemach moment 0 . 030 0 . 0289 ± 0 . 0015 Eq.(13) 0 . 043(3) δ P E 0 . 043(3) δ P E (2) � � � p14 Proton inelastic polarizab. δ N 0 . 028(2)∆ E hadr 0 . 027(2) pol [64] 0 . 0280 ± 0 . 0020 6 p15 Neutron inelastic polarizab. 0 . 016(8) δ N E p16 Proton & neutron subtraction term − 0 . 0098 ± 0 . 0098 Eq.(15) sum Nucleon TPE, p13+p14+p15+p16 0 . 043(3) 0 . 030 0.027(2) 0 . 059(9) 0 . 0471 ± 0 . 0101 SUM 2 Total nucleon contrib. 0 . 043(3) 0 . 028 0.030(2) 0 . 061(9) 0 . 0476 ± 0 . 0105 Sum , published 1 . 680(16) 1 . 941(19) 1.690(20) 1 . 717(20) 2 . 011(740) Sum , corrected 1 . 697(19) 1.714(20) 1 . 707(20) 1 . 748(740) 1 . 7096 ± 0 . 0147 J.J. Krauth et al. , Ann. Phys. 366 , 168 (2016) [1506.01298] ∆ E TPE ( theo ) = 1 . 7096 ± 0 . 0200 meV ∆ E TPE ( exp ) = 1 . 7638 ± 0 . 0068 meV Randolf Pohl PhiPsi17 , 28 June 2017 47

  72. Experimental TPE in µ d ∆ E TPE ( theo ) = 1 . 7096 ± 0 . 0200 meV ∆ E TPE ( exp ) = 1 . 7638 ± 0 . 0068 meV 2 . 6 σ , 3x more accurate = 228 . 7766 ( 10 ) meV ( QED )+ ∆ E TPE − 6 . 1103 ( 3 ) r 2 d meV / fm 2 , ∆ E LS • ∆ E exp LS = 202 . 8785 ( 31 ) stat ( 14 ) syst meV from µ D exp. p = 3 . 82007 ( 65 ) fm 2 [H/D(1S-2S) isotope shift] • r d = 2 . 12771 ( 22 ) fm from r 2 d − r 2 r p ( µ H) = 0.84087(39) fm using D spectr. µ D 2 . 6 σ from TPE ✛ ✲ µ H + iso H/D(1S-2S) CODATA-2014 e-d scatt. 2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145 Deuteron charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 48

  73. Experimental TPE in µ d ∆ E TPE ( theo ) = 1 . 7096 ± 0 . 0200 meV ∆ E TPE ( exp ) = 1 . 7638 ± 0 . 0068 meV 2 . 6 σ , 3x more accurate = 228 . 7766 ( 10 ) meV ( QED )+ ∆ E TPE − 6 . 1103 ( 3 ) r 2 d meV / fm 2 , ∆ E LS • ∆ E exp LS = 202 . 8785 ( 31 ) stat ( 14 ) syst meV from µ D exp. p = 3 . 82007 ( 65 ) fm 2 [H/D(1S-2S) isotope shift] • r d = 2 . 12771 ( 22 ) fm from r 2 d − r 2 r p ( µ H) = 0.84087(39) fm using D spectr. µ D 2 . 6 σ from TPE ✛ ✲ µ H + iso H/D(1S-2S) CODATA-2014 e-d scatt. 2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145 Deuteron charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 48

  74. Deuteron charge radius H/D isotope shift: r 2 d − r 2 p = 3 . 82007 ( 65 ) fm 2 C.G. Parthey, RP et al. , PRL 104 , 233001 (2010) r d = 2 . 14130 ( 250 ) fm CODATA 2014 r p from µ H gives r d = 2 . 12771 ( 22 ) fm ← 5 . 4 σ from r p µ H + iso H/D(1S-2S) CODATA-2014 e-d scatt. 2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145 Deuteron charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 49

  75. Deuteron charge radius H/D isotope shift: r 2 d − r 2 p = 3 . 82007 ( 65 ) fm 2 C.G. Parthey, RP et al. , PRL 104 , 233001 (2010) r d = 2 . 14130 ( 250 ) fm CODATA 2014 r p from µ H gives r d = 2 . 12771 ( 22 ) fm ← 5 . 4 σ from r p µ H + iso H/D(1S-2S) CODATA-2014 ✛ ( 5 . 4 σ from µ H) ✲ e-d scatt. 2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145 Deuteron charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 49

  76. Deuteron charge radius H/D isotope shift: r 2 d − r 2 p = 3 . 82007 ( 65 ) fm 2 C.G. Parthey, RP et al. , PRL 104 , 233001 (2010) r d = 2 . 14130 ( 250 ) fm CODATA 2014 r p from µ H gives r d = 2 . 12771 ( 22 ) fm ← 5 . 4 σ from r p r d = 2 . 12562 ( 13 ) exp ( 77 ) theo fm RP et al. , Science 353 , 417 (2016) Muonic DEUTERIUM µ D µ H + iso H/D(1S-2S) CODATA-2014 ✛ ( 5 . 4 σ from µ H) ✲ e-d scatt. 2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145 Deuteron charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 49

  77. Deuteron charge radius H/D isotope shift: r 2 d − r 2 p = 3 . 82007 ( 65 ) fm 2 C.G. Parthey, RP et al. , PRL 104 , 233001 (2010) r d = 2 . 14130 ( 250 ) fm CODATA 2014 r p from µ H gives r d = 2 . 12771 ( 22 ) fm ← 5 . 4 σ from r p r d = 2 . 12562 ( 13 ) exp ( 77 ) theo fm RP et al. , Science 353 , 417 (2016) Muonic DEUTERIUM µ D another 6 σ discrepancy! ✛ ✲ µ H + iso H/D(1S-2S) CODATA-2014 ✛ ( 5 . 4 σ from µ H) ✲ e-d scatt. 2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145 Deuteron charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 49

  78. Deuteron charge radius H/D isotope shift: r 2 d − r 2 p = 3 . 82007 ( 65 ) fm 2 C.G. Parthey, RP et al. , PRL 104 , 233001 (2010) r d = 2 . 14130 ( 250 ) fm CODATA 2014 r p from µ H gives r d = 2 . 12771 ( 22 ) fm ← 5 . 4 σ from r p r d = 2 . 12562 ( 13 ) exp ( 77 ) theo fm RP et al. , Science 353 , 417 (2016) Muonic DEUTERIUM r d = 2 . 14150 ( 450 ) fm electronic D ( r p indep.) RP et al. Metrologia 54 , L1 (2017) D spectr. µ D another 6 σ discrepancy! ✛ ✲ µ H + iso H/D(1S-2S) CODATA-2014 ✛ ( 5 . 4 σ from µ H) ✲ e-d scatt. 2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145 Deuteron charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 49

  79. Deuteron charge radius H/D isotope shift: r 2 d − r 2 p = 3 . 82007 ( 65 ) fm 2 C.G. Parthey, RP et al. , PRL 104 , 233001 (2010) r d = 2 . 14130 ( 250 ) fm CODATA 2014 r p from µ H gives r d = 2 . 12771 ( 22 ) fm ← 5 . 4 σ from r p r d = 2 . 12562 ( 13 ) exp ( 77 ) theo fm RP et al. , Science 353 , 417 (2016) Muonic DEUTERIUM r d = 2 . 14150 ( 450 ) fm ← 3 . 5 σ electronic D ( r p indep.) RP et al. Metrologia 54 , L1 (2017) 3 . 5 σ indep. of r p ✛ ✲ D spectr. µ D another 6 σ discrepancy! ✛ ✲ µ H + iso H/D(1S-2S) CODATA-2014 ✛ ( 5 . 4 σ from µ H) ✲ e-d scatt. 2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145 Deuteron charge radius [fm] Randolf Pohl PhiPsi17 , 28 June 2017 49

  80. Results from muonic deuterium Lamb shift in muonic deuterium: LS = 228 . 7766 ( 10 ) meV + ∆ E TPE − 6 . 1103 ( 3 ) r 2 ∆ E theo d meV / fm 2 with deuteron polarizability (TPE) ∆ E TPE ( theo ) = 1 . 7096 ( 200 ) meV J.J. Krauth et al. , Ann. Phys. 366 , 168 (2016) [1506.01298] compilation of original results from: Borie, Martynenko et al. , Karshenboim et al. , Jentschura, Bacca, Barnea, Nevo Dinur et al. , Pachucki et al. , Friar, Carlson, Gorchtein, Vanderhaeghen, and others r d ( µ d ) = 2 . 12562 ( 13 ) exp ( 77 ) theo fm RP et al. , Science 353 , 417 (2016) r d ( µ p + iso ) = 2 . 12771 ( 22 ) fm from r p ( µ p ) and H/D(1S-2S) 2 . 6 σ r d ( CODATA ) = 2 . 14130 ( 250 ) fm 6 . 0 σ to ∆ E LS ( r d ( CODATA )) Disprepancy = 0.409(68) meV (“proton radius puzzle” ( µ p discrepancy) = 0.329(47) meV) Randolf Pohl PhiPsi17 , 28 June 2017 50

  81. Theory in µ d: TPE Deuteron structure contributions to the Lamb shift in muonic deuterium. µ µ d d µ µ d d Cancellation between elastic “Friar” (a.k.a. 3rd Zemach) terms and part of inelastic “polarizability” contributions. Friar & Payne, PRA 56, 5173 (1997) ; Pachucki, PRL 106, 193007 (2011) ; Friar, PRC 88, 034003 (2013) ; Hernandez et al. , PLB 736, 344 (2014) J.J. Krauth, RP et al. , Ann. Phys. 366 , 168 (2016) [1506.01298] Randolf Pohl PhiPsi17 , 28 June 2017 51

  82. Theory in µ d: TPE Table 3: Deuteron structure contributions to the Lamb shift in muonic deuterium. Values are in meV. Item Contribution Pachucki [55] Friar [60] Hernandez et al. [58] Pach.& Wienczek [65] Carlson et al. [64] Our choice N 3 LO † AV18 ZRA AV18 AV18 data value source Source 1 2 3 4 5 6 δ (0) p1 Dipole 1 . 910 δ 0 E 1 . 925 Leading C1 1 . 907 1 . 926 1 . 910 δ 0 E 1 . 9165 ± 0 . 0095 3-5 D 1 δ (0) p2 Rel. corr. to p1, longitudinal part − 0 . 035 δ R E − 0 . 037 Subleading C1 − 0 . 029 − 0 . 030 − 0 . 026 δ R E L δ (0) p3 Rel. corr. to p1, transverse part 0 . 012 0 . 013 T p4 Rel. corr. to p1, higher order 0 . 004 δ HO E sum Total rel. corr., p2+p3+p4 − 0 . 035 − 0 . 037 − 0 . 017 − 0 . 017 − 0 . 022 − 0 . 0195 ± 0 . 0025 3-5 p5 Coulomb distortion, leading − 0 . 255 δ C 1 E − 0 . 255 δ C 1 E p6 Coul. distortion, next order − 0 . 006 δ C 2 E − 0 . 006 δ C 2 E δ (0) sum Total Coulomb distortion, p5+p6 − 0 . 261 − 0 . 262 − 0 . 264 − 0 . 261 − 0 . 2625 ± 0 . 0015 3-5 C δ (2) p7 El. monopole excitation − 0 . 045 δ Q 0 E − 0 . 042 C0 − 0 . 042 − 0 . 041 − 0 . 042 δ Q 0 E R 2 δ (2) p8 El. dipole excitation 0 . 151 δ Q 1 E 0 . 137 Retarded C1 0 . 139 0 . 140 0 . 139 δ Q 1 E D 1 D 3 δ (2) p9 El. quadrupole excitation − 0 . 066 δ Q 2 E − 0 . 061 C2 − 0 . 061 − 0 . 061 − 0 . 061 δ Q 2 E Q sum Tot. nuclear excitation, p7+p8+p9 0 . 040 0 . 034 C0 + ret-C1 + C2 0 . 036 0 . 038 0 . 036 0 . 0360 ± 0 . 0020 2-5 δ (0) − 0 . 008 ♦ p10 Magnetic δ M E − 0 . 011 M1 − 0 . 008 − 0 . 007 − 0 . 008 δ M E − 0 . 0090 ± 0 . 0020 2-5 M SUM 1 Total nuclear (corrected) 1 . 646 1 . 648 1 . 656 1 . 676 1 . 655 1 . 6615 ± 0 . 0103 δ (2) 0 . 020 ♦ 0 . 021 ♦ ?? p11 Finite nucleon size 0 . 021 Retarded C1 f.s. 0 . 020 δ F S E NS δ (1) p12 n p charge correlation − 0 . 023 pn correl. f.s. − 0 . 017 − 0 . 017 − 0 . 018 δ F Z E np sum p11+p12 − 0 . 002 0 . 003 0 . 004 0 . 002 0 . 0010 ± 0 . 0030 2-5 � r 3 � pp � � p13 Proton elastic 3rd Zemach moment 0 . 030 0 . 0289 ± 0 . 0015 Eq.(13) 0 . 043(3) δ P E 0 . 043(3) δ P E (2) � � � p14 Proton inelastic polarizab. δ N 0 . 028(2)∆ E hadr 0 . 027(2) pol [64] 0 . 0280 ± 0 . 0020 6 p15 Neutron inelastic polarizab. 0 . 016(8) δ N E p16 Proton & neutron subtraction term − 0 . 0098 ± 0 . 0098 Eq.(15) sum Nucleon TPE, p13+p14+p15+p16 0 . 043(3) 0 . 030 0.027(2) 0 . 059(9) 0 . 0471 ± 0 . 0101 SUM 2 Total nucleon contrib. 0 . 043(3) 0 . 028 0.030(2) 0 . 061(9) 0 . 0476 ± 0 . 0105 Sum , published 1 . 680(16) 1 . 941(19) 1.690(20) 1 . 717(20) 2 . 011(740) Sum , corrected 1 . 697(19) 1.714(20) 1 . 707(20) 1 . 748(740) 1 . 7096 ± 0 . 0147 J.J. Krauth et al. , Ann. Phys. 366 , 168 (2016) [1506.01298] ∆ E TPE ( theo ) = 1 . 7096 ± 0 . 0200 meV ± 0 . 0034 meV vs. exp. uncertainty Randolf Pohl PhiPsi17 , 28 June 2017 51

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend