the kirchhoff index of cluster networks
play

The Kirchhoff Index of Cluster Networks uz 1 , E. Bendito 1 , A. - PowerPoint PPT Presentation

The Kirchhoff Index of Cluster Networks uz 1 , E. Bendito 1 , A. Carmona 1 and A.M. Encinas 1 C. Ara Budapest, Eurocomb 2011 1 Dept. Matem` atica Aplicada III Universitat Polit` ecnica de Catalunya, Barcelona Kirchhoff Index in Chemistry


  1. The Kirchhoff Index of Cluster Networks uz 1 , E. Bendito 1 , A. Carmona 1 and A.M. Encinas 1 C. Ara´ Budapest, Eurocomb 2011 1 Dept. Matem` atica Aplicada III Universitat Polit` ecnica de Catalunya, Barcelona

  2. Kirchhoff Index in Chemistry � The Kirchhoff Index was introduced in Chemistry Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 2 / 16 The Kirchhoff Index of Cluster Networks

  3. Kirchhoff Index in Chemistry � The Kirchhoff Index was introduced in Chemistry � Kirchhoff Index of a molecule: � 2 � atomic displacements � from equilibrium positions atoms Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 2 / 16 The Kirchhoff Index of Cluster Networks

  4. Kirchhoff Index in Chemistry � The Kirchhoff Index was introduced in Chemistry � Kirchhoff Index of a molecule: � 2 � atomic displacements � from equilibrium positions atoms small Kirchhoff Index ⇒ the atoms are very rigid in the molecule H H C H H H H C H C C C H H H H C H H C H H H Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 2 / 16 The Kirchhoff Index of Cluster Networks

  5. Kirchhoff Index in Mathematics � In the mathematic field, it is interesting to find possible relations between the Kirchhoff Indexes of composite networks and those of their factors k 2 k 1 k k 3 k 4 Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 3 / 16 The Kirchhoff Index of Cluster Networks

  6. Our objective � We have worked with a generalization of the classical Kirchhoff Index k k ( ω ) ��� Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 4 / 16 The Kirchhoff Index of Cluster Networks

  7. Our objective � We have worked with a generalization of the classical Kirchhoff Index k k ( ω ) ��� � We have worked with on a particular family of composite networks: a generalized notion of cluster networks same different! same base base same same same Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 4 / 16 The Kirchhoff Index of Cluster Networks

  8. Our objective � We have worked with a generalization of the classical Kirchhoff Index k k ( ω ) ��� � We have worked with on a particular family of composite networks: a generalized notion of cluster networks same different! same base base same same same � Our objective is to determine the Kirchhoff Index of generalized cluster networks in terms of the ones of their factors. Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 4 / 16 The Kirchhoff Index of Cluster Networks

  9. Notations and basic results � Γ = ( V, E, c ) finite connected network ∗ V = { x 1 , . . . , x n } ∗ { x i , x j } ∈ E has conductance c ij > 0 Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 5 / 16 The Kirchhoff Index of Cluster Networks

  10. Notations and basic results � Γ = ( V, E, c ) finite connected network ∗ V = { x 1 , . . . , x n } ∗ { x i , x j } ∈ E has conductance c ij > 0 n � ω ∈ R n , ω 2 ω i > 0 , � i = 1 weight on V i =1 Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 5 / 16 The Kirchhoff Index of Cluster Networks

  11. Notations and basic results � Γ = ( V, E, c ) finite connected network ∗ V = { x 1 , . . . , x n } ∗ { x i , x j } ∈ E has conductance c ij > 0 n � ω ∈ R n , ω 2 ω i > 0 , � i = 1 weight on V i =1 standard inner product on R n � �· , ·� n u , v ∈ R n where � u , v � = � u i v i for i =1 Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 5 / 16 The Kirchhoff Index of Cluster Networks

  12. Notations and basic results � Γ = ( V, E, c ) finite connected network ∗ V = { x 1 , . . . , x n } ∗ { x i , x j } ∈ E has conductance c ij > 0 n � ω ∈ R n , ω 2 ω i > 0 , � i = 1 weight on V i =1 standard inner product on R n � �· , ·� n u , v ∈ R n where � u , v � = � u i v i for i =1 � L = ( L ij ) n combinatorial Laplacian i , j =1 n where L ii = � c ik and L ij = − c ij for i � = j k =1 Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 5 / 16 The Kirchhoff Index of Cluster Networks

  13. Schr¨ odinger matrix � L q = L + Q Schr¨ odinger matrix with potential q ∗ q ∈ R n potential on Γ ∗ Q = diag ( q 1 , . . . , q n ) diagonal matrix given by the values of q on V Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 6 / 16 The Kirchhoff Index of Cluster Networks

  14. Schr¨ odinger matrix � L q = L + Q Schr¨ odinger matrix with potential q ∗ q ∈ R n potential on Γ ∗ Q = diag ( q 1 , . . . , q n ) diagonal matrix given by the values of q on V Remark But we want L q to be positive semi-definite! Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 6 / 16 The Kirchhoff Index of Cluster Networks

  15. Schr¨ odinger matrix � L q = L + Q Schr¨ odinger matrix with potential q ∗ q ∈ R n potential on Γ ∗ Q = diag ( q 1 , . . . , q n ) diagonal matrix given by the values of q on V Remark But we want L q to be positive semi-definite! � We take q = q ω ∈ R n potential determined by ω , where ( q ω ) i = − ( ω ) − 1 ( L · ω ) i i Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 6 / 16 The Kirchhoff Index of Cluster Networks

  16. Schr¨ odinger matrix � L q = L + Q Schr¨ odinger matrix with potential q ∗ q ∈ R n potential on Γ ∗ Q = diag ( q 1 , . . . , q n ) diagonal matrix given by the values of q on V Remark But we want L q to be positive semi-definite! � We take q = q ω ∈ R n potential determined by ω , where ( q ω ) i = − ( ω ) − 1 ( L · ω ) i i Results L q ω is positive semi-definite and singular � Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 6 / 16 The Kirchhoff Index of Cluster Networks

  17. Schr¨ odinger matrix � L q = L + Q Schr¨ odinger matrix with potential q ∗ q ∈ R n potential on Γ ∗ Q = diag ( q 1 , . . . , q n ) diagonal matrix given by the values of q on V Remark But we want L q to be positive semi-definite! � We take q = q ω ∈ R n potential determined by ω , where ( q ω ) i = − ( ω ) − 1 ( L · ω ) i i Results L q ω is positive semi-definite and singular � L q ω · v = 0 iff v = aω with a ∈ R � Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 6 / 16 The Kirchhoff Index of Cluster Networks

  18. Green matrix � L q ω · u = g Poisson equation Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 7 / 16 The Kirchhoff Index of Cluster Networks

  19. Green matrix � L q ω · u = g Poisson equation L † the unique u ∈ R n such that � L † q ω f ∈ R n Green matrix − − → q ω ∗ L q ω · u = f − � f , ω � · ω ∗ � u , ω � = 0 Remark The Green matrix L † q ω is the Moore-Penrose inverse of the Schr¨ odinger matrix L q ω . Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 7 / 16 The Kirchhoff Index of Cluster Networks

  20. Green matrix � L q ω · u = g Poisson equation L † the unique u ∈ R n such that � L † q ω f ∈ R n Green matrix − − → q ω ∗ L q ω · u = f − � f , ω � · ω ∗ � u , ω � = 0 Remark The Green matrix L † q ω is the Moore-Penrose inverse of the Schr¨ odinger matrix L q ω . Result L † � q ω · ω = 0 Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 7 / 16 The Kirchhoff Index of Cluster Networks

  21. Effective resistances and Kirchhoff Index effective resistance between a pair of vertices � R ω − u j R ω ( x i , x j ) = u ⊤ · L q ω · u = u i ω i ω j where L q ω · u = e i − e j ω i ω j Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 8 / 16 The Kirchhoff Index of Cluster Networks

  22. Effective resistances and Kirchhoff Index effective resistance between a pair of vertices � R ω − u j R ω ( x i , x j ) = u ⊤ · L q ω · u = u i ω i ω j where L q ω · u = e i − e j ω i ω j � r ω total resistance on a vertex r ω ( x i ) = v ⊤ · L q ω · v = v i − 1 n � v , ω � ω i where L q ω · v = e i − ω ω i Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 8 / 16 The Kirchhoff Index of Cluster Networks

  23. Effective resistances and Kirchhoff Index effective resistance between a pair of vertices � R ω − u j R ω ( x i , x j ) = u ⊤ · L q ω · u = u i ω i ω j where L q ω · u = e i − e j ω i ω j � r ω total resistance on a vertex r ω ( x i ) = v ⊤ · L q ω · v = v i − 1 n � v , ω � ω i where L q ω · v = e i − ω ω i � k ( ω ) Kirchhoff index of Γ respect to ω n k ( ω ) = 1 � R ω ( x i , x j ) ω 2 i ω 2 j 2 i,j =1 Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 8 / 16 The Kirchhoff Index of Cluster Networks

  24. Effective resistances and Kirchhoff Index Results r ω > 0 � Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 9 / 16 The Kirchhoff Index of Cluster Networks

  25. Effective resistances and Kirchhoff Index Results r ω > 0 � � R ω is a distance on Γ Ara´ uz, Bendito, Carmona, Encinas (UPC) Matem` atica Aplicada III dept. 9 / 16 The Kirchhoff Index of Cluster Networks

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend