the global well posedness for the compressible viscous
play

The global well-posedness for the compressible viscous fluid flow in - PowerPoint PPT Presentation

. . The global well-posedness for the compressible viscous fluid flow in 3D exterior domains . . . . . Yoshihiro Shibata Math. Department and RISE, Waseda University Mathflows 2015, Porquerolles Sept. 1318, 2015. Partially supported


  1. . . The global well-posedness for the compressible viscous fluid flow in 3D exterior domains . . . . . Yoshihiro Shibata Math. Department and RISE, Waseda University Mathflows 2015, Porquerolles Sept. 13–18, 2015. Partially supported by Top Global University Project and JSPS Grant-in-aid for Scientific Research (S) # 24224004 Joint work with Yuko Enomoto (Shibaura Institute of Technology). . . . . . . Y.Shibata (Waseda Univ. ) Compressible viscous fluid flow Sept. 13–18, 2015 1 / 22

  2. . (NP)  ρ t + div ( ρ u ) = 0 in Ω × (0 , T ) ,    ρ ( u t + u · ∇ u ) − µ ∆ u − ν ∇ div u + ∇ P ( ρ ) = 0 in Ω × (0 , T ) ,   u | ∂ Ω = 0 , ( ρ, u ) | t =0 = ( ρ ∗ + ρ 0 , u 0 ) in Ω .  Ω ⊂ R 3 : exterior domain ( R 3 \ Ω is bounded) ∂ Ω : boundary of Ω, sufficiently smooth ρ ∗ > 0 : mass density of the reference body Ω µ > 0, ν > 0 : viscosity coefficients P ( ρ ) : C ∞ function of ρ > 0 ρ = ρ ( x, t ) : density u = ( u 1 ( x, t ) , u 2 ( x, t ) , u 3 ( x, t )) : velocity . Assumption . . . P ′ ( ρ ) > 0 for any ρ > 0 and P ( ρ ∗ ) = 0 . . . . . If not, we consider P ( ρ ) − P ( ρ ∗ ) instead of P ( ρ ). . . . . . . . Y.Shibata (Waseda Univ. ) Compressible viscous fluid flow Sept. 13–18, 2015 2 / 22

  3. History (1/3) Local well-posedness • Cauchy Problem J.Nash (1962) N.Itaya (1970) A.I.Volpert-S.I.Hudjaev (1972) • I.B.V.P. V.A.Solonnikov (1976),(1981) Global well-posedness • A.Matsumura & T.Nishida (1980), (1981) Ω : R 3 or exterior domain, Assumption: ∥ ( ρ 0 , u 0 ) ∥ H 3 ≤ ε ρ − ρ ∗ ∈ C 0 ([0 , ∞ ) , H 3 (Ω)) ∩ C 1 ([0 , ∞ ) , H 2 (Ω)), u ∈ C 0 ([0 , ∞ ) , H 3 (Ω)) ∩ C 1 ([0 , ∞ ) , H 1 (Ω)), ρ t , ∇ ρ, u t ∈ L 2 ((0 , ∞ ) , H 2 (Ω)), ∇ u ∈ L 2 ((0 , ∞ ) , H 3 (Ω)) . . . . . . Y.Shibata (Waseda Univ. ) Compressible viscous fluid flow Sept. 13–18, 2015 3 / 22

  4. History (2/3) . Global well-posedness • A.Valli (1983), A.Valli & W.Zajaczkowski (1986) non-homogenious boundaly domain, periodic solution • V.A.Solonnikov (1995) Ω : bounded domain, u ∈ W ℓ +2 ,ℓ/ 2+1 ( ℓ > 1 / 2) 2 • M.Kawashita (2002) Ω = R 3 , Cauchy problem, Assumption : ∥ ( ρ 0 , u 0 ) ∥ H 2 ≤ ε ( ρ, u ) ∈ C 0 ([0 , ∞ ) , H 2 ), ∇ u ∈ L 2 ((0 , ∞ ) , H 2 ), ∇ ρ ∈ L 2 ((0 , ∞ ) , H 1 ) • R.Danchin (2000) Critical space for the Cauchy problem • Y.Kagei & T.Kobayashi (2002), (2005) Half space • Y.Kagei & S.Kawashima (2006), Kagei (2012) Layer domain . . . . . . . Y.Shibata (Waseda Univ. ) Compressible viscous fluid flow Sept. 13–18, 2015 4 / 22

  5. History (3/3) • L p - L q type decay Cauchy problem G.Ponce (1985), Y.Wang & Z.Tan (2011) Exterior domain K.Deckelnick (1992), T.Kobayashi & S. (1999), Y.Enomoto & S (2012) • L p - L q maximal regularity Y.Enomoto & S (2013) Local well-posedness in general unbounded domain Global well-posedness in a bounded domain u ∈ L p ((0 , T ) , W 2 q (Ω)) ∩ W 1 q ((0 , T ) , L q (Ω)) , ρ ∈ W 1 p ((0 , T ) , W 1 q (Ω)) (Lagrangean) . . . . . . . Y.Shibata (Waseda Univ. ) Compressible viscous fluid flow Sept. 13–18, 2015 5 / 22

  6. Comments on the local well-posedness . • Using the Lagrange transformation to change the transport equation: ρ t + u · ∇ ρ to ∂ t ρ = ⇒ Quasilinear parabolic system. • We prove the maximal L p in time L q in space maximal regularity for the linearized equation. ρ t + ρ ∗ div u = f, ρ ∗ u t − α ∆ u − β ∇ div u + γ ∗ ∇ ρ = g , u | Γ = 0 , ( ρ, u ) | t =0 = ( ρ 0 , u 0 ) . • To prove the maximal regularity, we construct an R bounded solution operator A λ to the corresponding generalized resolvent problem. λρ + ρ ∗ div u = ˆ f, ρ ∗ λ u − α ∆ u − β ∇ div u + γ ∗ ∇ ρ = ˆ g , u | Γ = 0 . • Apply the Weis operator valued Fourier multipler theorem to the representation formula: u ( · , t ) = L − 1 λ [ A λ L [ f, g ]( λ )]( · , t ) with the help of Laplace transform L and its inverse transform L − 1 in time variable t and its co-variable λ . . . . . . . . Y.Shibata (Waseda Univ. ) Compressible viscous fluid flow Sept. 13–18, 2015 6 / 22

  7. Global well-posedness in the bounded domain case . • exponential stability of the analytic semigroup associated with the linearized equations. • spectral analysis to the resolvent problem: λρ + ρ ∗ div u = f, ρ ∗ λ u − α ∆ u − β ∇ div u + γ ∗ ∇ ρ = g in Ω , u | Γ = 0 . ⇒ ρ = λ − 1 ( f − ρ ∗ div u ) • λ ̸ = 0 = ρ ∗ λ u − α ∆ u − ( β + γ ∗ ρ ∗ λ − 1 ) ∇ div u = g ′ in Ω , u | Γ = 0 . • New prob. ρ ∗ µ u − α ∆ u − ( β + γ ∗ ρ ∗ λ − 1 ) ∇ div u = g ′ in Ω, u | Γ = 0. • uniqueness implies the unique existence, thus ρ ∗ λ u − α ∆ u − ( β + γ ∗ ρ ∗ λ − 1 ) ∇ div u = 0 in Ω, u | Γ = 0 = ⇒ u = 0 • λ = 0 case: We have to prove the unique existence theorem of the problem: div u = f, µ ∆ u + β ∇ div u − γ ∇ ρ = g in Ω , u | Γ = 0 , ∫ ∫ ∫ Thus, Ω f dx = Ω div u dx = Γ u · n dσ = 0 is necessary to show the exponential decay. • To prove the global well-posedness for the small data, we assume ∫ that Ω ρ 0 dx = 0. . . . . . . . Y.Shibata (Waseda Univ. ) Compressible viscous fluid flow Sept. 13–18, 2015 7 / 22

  8. Global well-posedness . Ω ⊂ R 3 : exterior domain, ( ρ 0 , u 0 ) ∈ H 2 , ∥ ( ρ 0 , u 0 ) ∥ H 2 ≤ ε ≪ 1 compatibility condition : u 0 | ∂ Ω = 0 = ⇒ the problem (NP) admits a unique solution ( ρ, u ) ρ ∈ C 0 ([0 , ∞ ) , H 2 ) ∩ C 1 ([0 , ∞ ) , H 1 ), u ∈ C 0 ([0 , ∞ ) , H 2 ) ∩ C 1 ([0 , ∞ ) , L 2 ) ∇ ρ, ρ t ∈ L 2 ((0 , ∞ ) , H 1 ), u t ∈ L 2 ((0 , ∞ ) , H 1 ), ∇ u ∈ L 2 ((0 , ∞ ) , H 2 ) Moreover, ∥ ( ρ 0 , u 0 ) ∥ H 2 + ∥ ( ρ 0 , u 0 ) ∥ L 1 = δ ≪ 1 ⇒ ∥ ( ρ ( · , t ) , u ( · , t )) ∥ L 2 ≤ Ct − 3 4 δ , = ∥∇ ( ρ ( · , t ) , u ( · , t )) ∥ H 1 ≤ Ct − 5 4 δ as t → ∞ . . . . . . . Y.Shibata (Waseda Univ. ) Compressible viscous fluid flow Sept. 13–18, 2015 8 / 22

  9. Linearized equation .  ρ t + ρ ∗ div u = 0 in Ω × (0 , ∞ ) ,    (LP) u t − µ ∗ ∆ u − ν ∗ ∇ div u + γ ∗ ∇ ρ = 0 in Ω × (0 , ∞ ) ,   u | ∂ Ω = 0 , ( ρ, u ) | t =0 = ( ρ 0 , u 0 ) in Ω  where Ω ⊂ R N ( N ≥ 3) is an exterior domain. . . . . . . . Y.Shibata (Waseda Univ. ) Compressible viscous fluid flow Sept. 13–18, 2015 9 / 22

  10. L p - L q decay for linearized equation . Let 1 < q < ∞ and let N ≥ 2. Then problem (LP) generates C 0 semigroup { T ( t ) } t ≥ 0 on H q (Ω) = { ( ρ 0 , u 0 ) ∈ W 1 q (Ω) × L q (Ω) } which is analytic. Let 1 ≤ q ≤ 2 ≤ p ≤ ∞ , let N ≥ 2, and let [ ρ 0 , u 0 ] p,q = ∥ ρ 0 ∥ W 1 p + ∥ u 0 ∥ L p + ∥ ( ρ 0 , u 0 ) ∥ L q . Then, ( ) ∥ ( ρ, u )( · , t ) ∥ L p ≤ C p,q t − N q − 1 1 2 p [ ρ, u 0 ] p,q ,  ( ) t − N 1 q − 1 − 1 2 [ ρ, u 0 ] p,q , 2 p p ≤ N  ∥∇ ( ρ, u )( · , t ) ∥ L p ≤ C p,q t − N 2 q [ ρ, u 0 ] p,q , p ≥ N   ( ) t − N 1 q − 1 − 1 [ ρ, u 0 ] p,q , p ≤ N/ 2 , 2 p  ∥∇ 2 u ( · , t ) ∥ L p ≤ C p,q t − N 2 q [ ρ, u 0 ] p,q . p ≥ N/ 2  . . . . . . . Y.Shibata (Waseda Univ. ) Compressible viscous fluid flow Sept. 13–18, 2015 10 / 22

  11. Idea of proof . Global well-posedness : A.Matsumura & T.Nishida method • first energy is obtained directly in Ω • To obtain higher order energy estimate, we consider the half-space problem: x 3 > 0. • energy method for tangential derivative and time derivative • To estimate normal derivative D 3 , we use the formula D 3 ( ρ t + u · ∇ ρ ) + δ ∗ D 3 ρ = ( · · · there are no D 2 3 terms) . • To estimate D 2 3 ρ , we use the formula D 2 3 ( ρ t + u · ∇ ρ ) + δ ∗ D 2 3 ρ = · · · Multiplying this formula by D 2 3 ρ , we have 1 d 3 ρ ( · , t ) ∥ 2 + δ ∗ ∥ D 2 3 ρ ( · , t ) ∥ 2 − (div u D 2 dt ∥ D 2 3 ρ, D 2 3 ρ ) = · · · 2 . . . . . . . Y.Shibata (Waseda Univ. ) Compressible viscous fluid flow Sept. 13–18, 2015 11 / 22

  12. The worst term of the nonlinear estimate: ∫ t ∫ t ∥∇ 2 ρ ∇ u ∥ 2 ∥∇ 2 ρ ∥ 2 L 2 ∥∇ u ∥ 2 L 2 ds ≤ L ∞ ds 0 0 ∫ t ∥∇ 2 ρ ∥ 2 L 2 ∥∇ u ∥ 2 ≤ C H 2 ds 0 ∫ t ∥∇ 2 ρ ( · , s ) ∥ 2 ∥∇ u ∥ 2 ≤ C sup H 2 ds L 2 0 <s<t 0 To estimate nonlinear terms, we use ∥ v ∥ L 6 ≤ ∥∇ v ∥ L 2 , ∥ v ∥ L 2 (Ω ∩ B R ) ≤ C R ∥∇ v ∥ L 2 , ∥ v ∥ L ∞ ≤ C ∥ v ∥ L 6 ≤ C ∥ v ∥ H 1 In this way, we can enclosed our estimations in ( ρ, u ) ∈ L ∞ ((0 , ∞ ) , H 2 (Ω)) , ( ρ t , u t ) ∈ L ∞ ((0 , ∞ ) , L 2 (Ω)) ∇ u ∈ L 2 ((0 , ∞ ) , H 2 (Ω)) , u t , ∇ ρ, ρ t ∈ L 2 ((0 , ∞ ) , H 1 (Ω)) . . . . . . Y.Shibata (Waseda Univ. ) Compressible viscous fluid flow Sept. 13–18, 2015 12 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend