the eurocs stratocumulus case observations and numerical
play

The EUROCS stratocumulus case: Observations and numerical - PowerPoint PPT Presentation

The EUROCS stratocumulus case: Observations and numerical simulations of the diurnal cycle of stratocumulus Peter Duynkerke Stephan de Roode Herve Grenier* Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht, The Netherlands


  1. The EUROCS stratocumulus case: Observations and numerical simulations of the diurnal cycle of stratocumulus Peter Duynkerke Stephan de Roode Herve Grenier* Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht, The Netherlands * Meteo France Toulouse

  2. Contents • Description of the EUROCS stratocumulus case • Results from LES and Single Column models • Sensitivity studies • Summary & Conclusions

  3. The EUROCS stratocumulus case: The diurnal cycle of stratocumulus as observed during FIRE (GOES satelllite)

  4. Motivation Source: Duynkerke and Teixeira 2001

  5. The EUROCS stratocumulus case Observations • radiosonde (mean vertical profiles) • sodar (inversion height) • ceilometer (cloud base) • aircraft (turbulence) • microwave radiometer (liquid water path) Numerical simulations • Large-Eddy Simulation & Single Column Mode • same radiation schemes • prescribed large-scale forcing

  6. Contractors + associated LES SCM y CNRM-GAME ECMWF y KNMI y UL INM y y SMHI IMAU y LMD y MPI y y UKMO y y GCSS-WG1 2 1 TOTAL 6 8

  7. Analysis strategy

  8. LES results - Mean surface energy balance from 12 to 36 LT Laboratories H LE F s (z=0) LWP [W m -2 ] [W m -2 ] [W m -2 ] [g m -2 ] IMAU 3.1 23.1 211 90 MPI 4.1 23.0 171 116 UKMO 7.4 20.3 134 166 INM 5.1 22.6 178 128 NCAR 13.9 24.3 201 109 WV 8.6 28.1 185 95 mean LES 7.0 ± 3.9 23.6 ± 2.6 180 ± 27 117 ± 28 Mean observed F s : 190 Wm -2

  9. LES results - Liquid water path night time day time 300 � m ] MMobs obs -2 ] or [ 200 Za Ch Lo Sa 100 LWP [ g m Mo Le 0 0 12 24 36 48 Local time [h]

  10. LES results - Turbulence 800 vertical velocity obs. Za variance during the night Ch 700 Lo Sa Mo Le 600 500 z [ m ] 400 300 200 100 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 2 [ m 2 s -2 ] w

  11. LES results - Sensitivity to inversion jumps 2 2 0 0 -2 -2 � q t [g/kg] � q t [g/kg] -4 -4 -6 -6 CTEI CTEI v = 0 -8 �� v = 0 -8 �� FIRE I radiosondes FIRE I radiosondes initial initial -10 -10 0 5 10 15 20 0 5 10 15 20 l [K] ��� l [K] ���

  12. LES results - Sensitivity to inversion jumps - LWP 300 � m ] �� l = 12K , -2 ] or [ -1 � q t = -3 g kg �� l = 9K 200 -1 � q t = -1 g kg -1 LWP [ g m � q t = -5 g kg 100 0 0 6 12 18 24 Local time [h]

  13. SCM results - Mean surface energy balance from 12 to 36 LT Laboratories H LE F s (z=0) LWP [W m -2 ] [W m -2 ] [W m -2 ] [g m -2 ] KNMI 4.0 26.2 272 33 INM 6.1 21.0 140 157 CSU 14.6 24.5 250 160 LMD 0.2 15.9 237 41 MPI 29.6 5.5 119 156 CNRM 23.9 24.2 281 56 UKMO 10.2 26.0 173 75 CNRM 2 - 29.7 271 16 ECMWF 0.1 39.0 280 79 mean SCM 9.9 ± 10.9 23.6 ± 9.2 225 ± 64 87 ± 59 mean LES 7.0 ± 3.9 23.6 ± 2.6 180 ± 27 117 ± 28

  14. SCM results - LWP MMobs 250 obs Za LES Len Sa La 200 Che � m ] Ch Gr Lo -2 ] or [ Pi 150 Koe 100 LWP [ g m 50 0 0 12 24 36 48 local time [hours]

  15. Data availability http://www.phys.uu.nl/~wwwimau/research/atm_dyn/EUROCS_PART_I/eurocs.html/ LES: SCM: A Chlond 3D LES 2.5 km A Chlond SCM: Version May03 A Chlond Quasi 3D LES 2.5km A Cheinet (LMD) SCM D Lewellen 3D LES Standard Herve Grenier Version May04 CNRM- D Lewellen 3D Shear at inversion standart A Lock standard Martin Koehler (standard) A Lock D=7.5E-6 17m, horiz resolution C Lappen SCM A Lock shear at inversion G Lenderink SCM A Lock 17m horiz resoln A Lock GCM standard resolution M van Zanten (IMAU) 3D LES 2.5km A Lock GCM resolution D=7.5E-6 domain JM Piriou SCM 60 levels timestep 300.000 CH Moeng 3D LES 2.5km domain E Sanchez/J Cuxart SCM E Sanchez/J Cuxart 3D-LES FIRE case Sensitivity results with IMAU LES

  16. Papers • P. G. Duynkerke, S. R. de Roode + case participants: The EUROCS stratocumulus case: Observations and numerical simulations of the diurnal cycle of stratocumulus. • M. Kohler, M. C. van Zanten and S. R. de Roode: The impact of the diurnal cycle of the subsidence on the EUROCS stratocumulus case. • A. Chlond, F. Müller and I. Sednev: Numerical simulation of the diurnal cycle of marine stratocumulus during FIRE - A LES, SCM and GCM modelling study Related work • S. R. de Roode, P. G. Duynkerke and H. J. J. Jonker, 2002: Large Eddy Simulation: How large is large enough? Submitted to the J. Atmos. Sci.

  17. Conclusions: What did we learn? • EUROCS stratocumulus case Contains all the relevant physical processes (turbulence, radiation) -> first intercomparison of the diurnal cycle including shortwave radiation LES models simulate the diurnal cycle fairly well • Surface energy balance Solar downwelling radiation major component ( LWP ) Computed liquid water paths lead to largest uncertainties ( entrainment ) • Single column models Large individual variation in the results Complete data set available (observations & LES results) -> facilitates the assessment of strength and weaknesses of individual SCMs

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend