the epigenome tools 2 chip seq and data analysis
play

The Epigenome Tools 2: ChIP-Seq and Data Analysis Chongzhi Zang - PowerPoint PPT Presentation

The Epigenome Tools 2: ChIP-Seq and Data Analysis Chongzhi Zang zang@virginia.edu http://zanglab.com PHS5705: Public Health Genomics March 20, 2017 1 Outline Epigenome: basics review ChIP-seq overview ChIP-seq data analysis 2


  1. The Epigenome Tools 2: ChIP-Seq and Data Analysis Chongzhi Zang zang@virginia.edu http://zanglab.com PHS5705: Public Health Genomics March 20, 2017 1

  2. Outline • Epigenome: basics review • ChIP-seq overview • ChIP-seq data analysis 2

  3. Epigenome histone nucleosome The epigenome is a multitude of chemical compounds that can tell the genome what to do. The epigenome is made up of chemical compounds and proteins that can attach to DNA and direct such actions as turning genes on or off, controlling the production of proteins in particular cells. -- from genome.gov 3 Original figure from ENCODE, Darryl Leja (NHGRI), Ian Dunham (EBI)

  4. Epigenomic marks • DNA methylation • Histone marks – Covalent modifications – Histone variants • Chromatin regulators – Histone modifying enzymes – Chromatin remodeling complexes • * Transcription factors 4

  5. Histone modifications • Nucleosome Core Particles • Core Histones: H2A, H2B, H3, H4 Notation: H3K4me3 • Covalent modifications on histone tails include: methylation (me), acetylation (ac), phosphorylation … • Histone variants • Histone modifications are implicated in influencing gene expression. Allis C. et al. Epigenetics. 2006 5

  6. Histone modifications associate with regulation of gene expression Differential expression log2 (fold-change) 0.35 Fractions of enhancers 0.30 0.25 0.20 0.15 0.10 0.05 0 H2AK5ac H2AK9ac H2A.Z H2BK5ac H2BK5me1 H2BK12ac H2BK20ac H2BK120ac H3K4ac H3K4me1 H3K4me2 H3K4me3 H3K9ac H3K9me1 H3K9me2 H3K9me3 H3K14ac H3K18ac H3K23ac H3K27ac H3K27me1 H3K27me2 H3K27me3 H3K36ac H3K36me1 H3K36me3 H3K79me1 H3K79me2 H3K79me3 H3R2me1 H3R2me2 H4K5ac H4K8ac H4K12ac H4K16ac H4K20me1 H4K20me3 H4K91ac 6 Wang, Zang et al. Nat Genet 2008

  7. “Functions” of histone marks Table 3. Distinctive Chromatin Features of Genomic Elements Functional Annotation Histone Marks Promoters H3K4me3 Bivalent/Poised Promoter H3K4me3/H3K27me3 Transcribed Gene Body H3K36me3 Enhancer (both active and poised) H3K4me1 Poised Developmental Enhancer H3K4me1/H3K27me3 Active Enhancer H3K4me1/H3K27ac Polycomb Repressed Regions H3K27me3 Heterochromatin H3K9me3 7 Rivera & Ren Cell 2013

  8. H3K4me3/H3K27me3 Bivalent Domain Repressed H3K4me3 H3K27me3 Remained Poised Induced From: https://pubs.niaaa.nih.gov/publications/arcr351/77-85.htm 8

  9. ChIP-seq: Profiling epigenomes with sequencing histone nucleosome ATAC-seq 9 Original figure from ENCODE, Darryl Leja (NHGRI), Ian Dunham (EBI)

  10. ������� Published ChIP-seq datasets are skyrocketing We are entering the Big Data era Number of ChIP-seq datasets on GEO 3000 2500 � ������ � 2000 � ���� �� � 1500 1000 ����������� 500 0 ! �������������������������������� Mei et al. Nucleic Acids Research 2016 10

  11. Chromatin ImmunoPrecipitation (ChIP) 11

  12. Protein-DNA crosslinking in vivo (for TF) 12

  13. Chop the chromatin using sonication (TF) or micrococal nuclease (MNase) digestion (histone) 13

  14. Specific factor-targeting antibody 14

  15. Immunoprecipitation 15

  16. DNA purification 16

  17. PCR amplification and sequencing 17

  18. ChIP-seq data analysis overview Scale 500 bases hg19 chr19: 15,308,000 15,308,100 15,308,200 15,308,300 15,308,400 15,308,500 15,308,600 15,308,700 15,308,800 15,308,900 15,309,000 15,309,100 15,309,200 User Supplied Track @ILLUMINA-8879DC:231:KK:3:1:1070:945 1:Y:0: NNNAATACAGTCAGAAACATATCATATTGGAGAATA #################################### @ILLUMINA-8879DC:231:KK:3:1:1153:945 1:Y:0: NNNAAGCACACAGAAGATAACTAAACAATCAAGTAG #################################### @ILLUMINA-8879DC:231:KK:3:1:1222:945 1:Y:0: NNNAAGGGTCTTGAGAAGAAATCATTCTGGATGGCA #################################### @ILLUMINA-8879DC:231:KK:3:1:1304:939 1:Y:0: NNNCCAGGCTCCCGCGATTCTCCTGCCTCAGCTTCT #################################### @ILLUMINA-8879DC:231:KK:3:1:1354:945 1:Y:0: NNNCTCTTCCTTAGCTAAACTTTCAACTAAGCCAAA #################################### @ILLUMINA-8879DC:231:KK:3:1:1411:932 1:Y:0: NNNGTAGGACCATTGGCGTTGCGACACAAAAAATTT #################################### @ILLUMINA-8879DC:231:KK:3:1:1496:937 1:Y:0: NNNTTCATCGGGTTGAGAGTCCCCTTGTTGCATGCA #################################### @ILLUMINA-8879DC:231:KK:3:1:1533:939 1:Y:0: NNNATTTTCCCGTTCCAGGTCGCAATTTCCGCCGTT #################################### @ILLUMINA-8879DC:231:KK:3:1:1573:940 1:Y:0: NNNGGGGTGCGCCTTTAGTCCCAGCTACTCAGGAAC #################################### 18

  19. ChIP-seq data analysis overview • Where in the genome do these sequence reads come from? - Sequence alignment and quality control • What does the enrichment of sequences mean? - Peak calling • What can we learn from these data? – Downstream analysis and integration 19

  20. ChIP-seq data analysis: basic processing • alignment of each sequence read: bowtie or BWA cannot map to the reference genome ✗ can map to multiple loci in the genome ✗ can map to a unique location in the ✔ genome • redundancy control: Langmead et al. 2009, ✔ Zang et al. 2009 20

  21. ChIP-seq data analysis: Peak calling • pile-up profiling • DNA fragment size estimation peak model cross-correlation d s 0.055 0.35 forward tags reverse tags 0.05 0.30 0.045 0.25 0.04 0.035 Percentage 0.20 • Peak/signal 0.03 0.15 0.025 0.02 0.10 detection 0.015 0.05 0.01 0.005 0 50 100 150 200 250 300 350 400 − 600 − 400 − 200 0 200 400 600 Distance to the middle 21

  22. ChIP-seq data analysis: Peak calling • Sharp peaks • Broad peaks transcription factor binding, Histone modifications, DNase, ATAC-seq “super-enhancers” Diffuse MACS (Zhang, 2008) dynamic background SICER (Zang, 2009) Poisson model Spatial clustering of localized weak signal and integrative Poisson model NOTCH1 H3K27ac 22 Wang, Zang et al. 2014

  23. MACS • M odel-based A nalysis for C hIP- S eq • Tag distribution along the genome ~ Poisson distribution (λ BG = total tag / genome size) • ChIP-seq show local biases in the genome – Chromatin and sequencing bias – 200-300bp control windows have to few tags ChIP – But can look further Control Dynamic λ local = 300bp max( λ BG , [ λ ctrl , λ 1k , ] λ 5k , λ 10k ) 1kb 5kb 10kb http://liulab.dfci.harvard.edu/MACS/ Zhang et al, Genome Bio , 2008

  24. SICER • S patial-clustering I dentification of C hIP- E nriched R egions 5kb ★★★★★ 10kb omictools.com 24 Zang et al. Bioinformatics 2009

  25. ChIP-seq peak calling: Parameters Parameter Remarks Species and reference genome version, Genome e.g. hg38, hg18, mm10, mm9 Fraction of the mappable genome, vary in Effective genome rate species, read length, etc. Estimated by default; can specify DNA fragment size otherwise Data resolution, usually nucleosome Window size periodicity length, i.e. 200bp (for SICER only) Allowable gaps between Gap size eligible windows, usually 2 or 3 windows P-value cut-off Threshold for peak calling, from model Threshold for peak calling, BH correction False discovery rate (FDR) cut-off from p-value. 25

  26. ChIP-seq data analysis: Review 1. Read mapping (sequence alignment) 2. Peak calling: MACS or SICER 1. QC 2. DNA fragment size estimation (for Single-end) 3. Pile-up profile generation 4. Peak/signal detection 3. Downstream analysis/integration 26

  27. Data formats • fastq: raw sequences • BED: chr11 10344210 10344260 255 0 - chr4 76649430 76649480 255 0 + chr3 77858754 77858804 255 0 + chr16 62688333 62688383 255 0 + chr22 33031123 33031173 255 0 - • SAM/BAM: aligned sequencing reads • bedGraph, Wig, bigWig: pile-up profiles for browser visualization 27

  28. Data flow Raw sequence • fastq reads Aligned • BAM/BED reads Bowtie/BWA Reference genome Profile; • bedGraph/Wig/bigWig Peaks • BED MACS/SICER 28

  29. Galaxy: web-interface analysis platform • https://usegalaxy.org/ 29

  30. Run MACS on Cistrome, a Galaxy-based platform • http://cistrome.org/ap/ 30

  31. Run SICER on Galaxy-based platforms • http://services.cbib.u-bordeaux.fr/galaxy/ 31

  32. ChIP-seq: Downstream analysis • Data visualization – UCSC genome browser: http://genome.ucsc.edu/ – WashU epigenome browser: http://epigenomegateway.wustl.edu/ – IGV: http://software.broadinstitute.org/software/igv/ • Meta analysis – CEAS: http://liulab.dfci.harvard.edu/CEAS/ • Integration with gene expression – BETA: http://cistrome.org/BETA/ – MARGE: http://cistrome.org/MARGE/ • Integration with other epigenomic data – GREAT: http://great.stanford.edu – ENCODE SCREEN: http://screen.umassmed.edu/ – MANCIE: https://cran.r-project.org/package=MANCIE – Cistrome DB: http://cistrome.org/db/ 32

  33. BETA: Binding Expression Target Analysis � − ∆ ij � � • Regulatory Potential P ( g i ) = exp λ j ∈ S ( i ) TSS i j 33

  34. MARGE: A big data driven, integrative regression and semi- supervised approach for predicting functional enhancers enhancer sample samples samples samples prediction selection 34 Wang, Zang et al. Genome Res 2016

  35. ENCODE https://www.encodeproject.org/ 35

  36. Cistrome Data Browser http://cistrome.org/db/ 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend