the effect of partial ionisation in star formation
play

The effect of partial ionisation in star formation James Wurster - PowerPoint PPT Presentation

The effect of partial ionisation in star formation James Wurster with Matthew Bate & Daniel Price 1 st Phantom Users Workshop Monash University, 23 February 2018 Non-ideal magnetohydrodynamics Ambipolar Diffusion (dissipative) Hall


  1. The effect of partial ionisation in star formation James Wurster with Matthew Bate & Daniel Price 1 st Phantom Users Workshop Monash University, 23 February 2018

  2. Non-ideal magnetohydrodynamics Ambipolar Diffusion (dissipative) Hall Effect log B (non-dissipative) Ohmic Resistivity (dissipative) log n Image credit: Tsukamoto et al (2017); 2 Adapted from Wardle (2007) see also: Braiding & Wardle (2012a,b)

  3. Initial Conditions Ø Initial conditions: Ø 1 M sun of gas Ø Uniform density Ø Strong magnetic fields ( µ 0 = 5) Ø Ω .B < 0 (primary suite) Ø Ω .B > 0 (secondary suite) Ø Processes included: Ø Non-ideal MHD Ø Ohmic resistivity Ø Hall Effect Ø Ambipolar diffusion 3

  4. Extreme Regimes: Ionisation Algorithms iMHD ζ 12 ζ 13 ζ 14 ζ 15 ζ 16 ζ 17 ζ 18 ζ 19 ζ 20 ζ 22 ζ 23 ζ 24 ζ 25 ζ 30 HD log density [g/cm 3 ] -15 -15.2 -15.4 500 AU -15.6 ρ max =10 -15 g cm -3 log density [g/cm 3 ] -12 -13 30 AU -14 ρ max =10 -12 g cm -3 log density [g/cm 3 ] -13 -14 -15 150 AU ρ max =10 -13 g cm -3 Ideal MHD 𝜂 = 10 -16 s -1 𝜂 = 10 -17 s -1 𝜂 = 10 -18 s -1 Hydrodynamic Ø Images are log(density). Ø Rows are ρ = 10 -15 g cm -3 , ρ = 10 -13 g cm -3 , ρ = 10 -12 g cm -3 4 Wurster, Bate & Price (2018b)

  5. Extreme Regimes: Ionisation Algorithms iMHD ζ 12 ζ 13 ζ 14 ζ 15 ζ 16 ζ 17 ζ 18 ζ 19 ζ 20 ζ 22 ζ 23 ζ 24 ζ 25 ζ 30 HD log density [g/cm 3 ] -15 -15.2 -15.4 500 AU -15.6 ρ max =10 -15 g cm -3 log density [g/cm 3 ] -12 -13 30 AU -14 ρ max =10 -12 g cm -3 log density [g/cm 3 ] -13 -14 -15 150 AU ρ max =10 -13 g cm -3 Ideal MHD 𝜂 = 10 -16 s -1 𝜂 = 10 -17 s -1 𝜂 = 10 -18 s -1 Hydrodynamic Ø Images are log(density). Ø Rows are ρ = 10 -15 g cm -3 , ρ = 10 -13 g cm -3 , ρ = 10 -12 g cm -3 5 Wurster, Bate & Price (2018b)

  6. Extreme Regimes: Ionisation Algorithms log density [g/cm 3 ] ρ max ideal MHD ζ cr =10 -13 s -1 ζ cr =10 -14 s -1 ζ cr =10 -15 s -1 ζ cr =10 -16 s -1 ζ cr =10 -17 s -1 ζ cr =10 -18 s -1 Hydro -12 =10 -12 g cm -3 -13 -14 log |B| -1 -2 -3 0 v r [km/s] -100 -200 v y [km/s] 50 0 -50 6 Wurster, Bate & Price (2018b)

  7. Extreme Regimes: Ionisation Algorithms log density [g/cm 3 ] iMHD ζ 12 ζ 13 ζ 14 ζ 15 ζ 16 ζ 17 ζ 18 ζ 19 ζ 20 ζ 22 ζ 23 ζ 24 Hydro -12 -13 30 AU -14 ρ max =10 -12 g cm -3 log |B| -1 -2 -3 30 AU ρ max =10 -12 g cm -3 v y [km/s] 50 0 -50 30 AU ρ max =10 -12 g cm -3 0 v r [km/s] -100 -200 30 AU ρ max =10 -12 g cm -3 7 Wurster, Bate & Price (2018b)

  8. Extreme Regimes: Ionisation Algorithms 10 7 ζ 18 ζ 24 iMHD ζ 19 ζ 25 HD 10 6 ζ 10 ζ 20 ζ 30 ζ 16 ζ 22 ζ 17 ζ 23 10 5 cpu time [h] 10 4 10 3 10 2 10 1 10 0 10 -17 10 -16 10 -15 10 -14 10 -13 10 -12 10 -11 ρ max [g cm -3 ] 8 Wurster, Bate & Price (2018b)

  9. Collapse to stellar densities : Evolution of the density 9 Video available at https://www.youtube.com/watch?v=CgErHuWdcPw&t=3s

  10. Collapse to stellar densities 10 0 10 0 ζ 12 iMHD ζ 14 ζ 12 10 -4 ζ 15 10 -2 ζ 14 ζ 16 ζ 15 n i /(n i +n n ) ζ 16 ζ 10 -8 10 -4 HD ζ ζ 10 -12 ρ max [g cm -3 ] ζ 10 -6 ρ max =10 -10 g cm -3 10 -16 10 0 10 -8 10 -4 10 -10 n i /(n i +n n ) 10 -8 10 -12 10 -12 10 -14 ρ max =10 -7 g cm -3 10 -16 24400 24600 24800 25000 25200 10 10 0 Time [yr] 10 6 10 -4 n i /(n i +n n ) 10 -8 10 4 10 -12 10 2 B max [G] ρ max =10 -4 g cm -3 ; dt sc =0 10 -16 10 0 10 0 10 -4 n i /(n i +n n ) 10 -8 10 -2 10 -12 10 -4 dt sc =0.5yr 10 -16 10 -18 10 -16 10 -14 10 -12 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 10 10 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 Wurster, Bate & Price (2018a) ρ max [g cm -3 ] r [au]

  11. ρ ρ ζ ζ Collapse to stellar densities: First hydrostatic core ζ ζ ρ max =10 -7 g cm -3 ρ max =10 -7 g cm -3 50 50 50 z [AU] z [AU] z [AU] 0 0 0 -50 -50 -50 ζ cr =10 -12 s -1 ζ cr =10 -12 s -1 ζ ζ 50 50 50 50 z [AU] z [AU] z [AU] 0 0 0 ζ ζ -50 -50 -50 ζ cr =10 -16 s -1 ζ cr =10 -16 s -1 -50 0 50 -50 0 50 -50 0 50 x [AU] x [AU] x [AU] Wurster, Bate & Price -2 0 2 -2 0 2 -2 0 2 11 11 (2018a) v y [km/s] log |B| [G] v r [km/s] ζ ζ ζ ζ

  12. Collapse to stellar densities: Stellar core ζ cr =10 -16 s -1 ζ cr =10 -12 s -1 dt sc =17yr dt sc =0.5yr 28 au 28 au 7 au 7 au -5 0 5 -5 0 5 -5 0 5 -10 -5 0 5 10 v φ [km/s] v r [km/s] v φ [km/s] v r [km/s] 12 12 Wurster, Bate & Price (2018a)

  13. ζ Collapse to stellar densities: Stellar core ζ dt sc =0.5yr 1 z [AU] 0 -1 ζ cr =10 -12 s -1 ζ 1 z [AU] 0 -1 ζ ζ cr =10 -16 s -1 -1 0 1 x [AU] -2 0 2 13 13 Wurster, Bate & Price (2018a) log |B|[G] ζ ζ

  14. Conclusions Ø Modelled the collapse of a molecular cloud core through the first core to stellar densities; included Ohmic resistivity, ambipolar diffusion, the Hall effect Ø The coefficient of the Hall effect is similar to the ambipolar diffusion in the medium surrounding the core Ø High cosmic ray ionisation rates can reproduce ideal MHD collapses Ø Low cosmic ray ionisation rates can approximate hydrodynamicals collapses, but cannot reproduce them Ø Decreasing the cosmic ionisation rate increases the lifetime of the first hydrostatic core Ø The first and second hydrostatic cores become thermally ionised, but the accreting material is still only ionised by cosmic rays Ø The second core outflow is suppressed at low cosmic ray ionisation rates 14 j.wurster@exeter.ac.uk http://www.astro.ex.ac.uk/people/wurster/

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend