the doi model for the suspensions of rod like molecules
play

The Doi Model for the Suspensions of Rod-like Molecules in a - PowerPoint PPT Presentation

I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY The Doi Model for the Suspensions of Rod-like Molecules in a Compressible Fluid Hantaek Bae Center for Scientific Computation and Mathematical Modeling, University of Maryland Joint work with K.


  1. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY The Doi Model for the Suspensions of Rod-like Molecules in a Compressible Fluid Hantaek Bae Center for Scientific Computation and Mathematical Modeling, University of Maryland Joint work with K. Trivisa , University of Maryland HYP 2012, Padova, Italy 6/28, 2012

  2. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY D OI MODEL The Doi model describes the interaction between 1. the orientation of molecules at the microscopic scale and; 2. the macroscopic properties of the fluid in which these molecules are contained. Here, we consider the Doi model for suspensions of rod-like molecules in a dilute regime. Outline of the Talk 1. Introducing a compressible model; 2. Existence of a weak solution.

  3. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY S YSTEM OF EQUATIONS 1. Conservation of mass: ρ t + ∇ · ( u ρ ) = 0 . 2. Equation of the particle distribution τ ∈ S 2 , f t + ∇ · ( uf ) + ∇ τ · ( P τ ⊥ ∇ u τ f ) − ∆ τ f − ∆ f = 0 , (1) ∇ τ · ( P τ ⊥ ∇ u τ f ) : a drift-term on S 2 representing the shear forces acting on the rods, (2) P τ ⊥ ∇ u τ : the projection of the vector ∇ u τ on S 2 , (3) ∆ τ f : the rotational diffusion = ⇒ change the orientation of rods spontaneously.

  4. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY 3. Equation of Motion: ( ρ u ) t + ∇ · ( ρ u ⊗ u ) = ∇ · T T = S − p I 3 × 3 (Stokes’ Law) , S = S f + S p , p = p f + p p . � ∇ u + ( ∇ u ) t � (1) S f = + ( ∇ · u ) I 3 × 3 , (2) S p = σ − η I 3 × 3 , � �� � = ⇒ Energy Dissipation � (3) σ ( t , x ) = S 2 ( 3 τ ⊗ τ − I 3 × 3 ) f ( t , x , τ ) d τ (thermodynamic consistency), � (4) η ( t , x ) = S 2 f ( t , x , τ ) d τ (particle density), γ > 3 (5) p = ρ γ + η 2 , 2. ���� = ⇒ Regularity of η

  5. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY ρ t + ∇ · ( ρ u ) = 0 , ( ρ u ) t + ∇ · ( ρ u ⊗ u ) − ∆ u − ∇ ( ∇ · u ) + ∇ ρ γ + ∇ η 2 = ∇ · σ − ∇ η, f t + ∇ · ( uf ) + ∇ τ · ( P τ ⊥ ( ∇ x u τ ) f ) − ∆ τ f − ∆ x f = 0 , η t + ∇ · ( η u ) − ∆ η = 0 . x ∈ Ω ⊂ R 3 : bounded domain with Dirichlet boundary condition u = 0 , f = 0 , η = 0 on ∂ Ω . Known Results (Incomplete) 1. Constantin et al (2005, 2007, 2008), Lions - Masmoudi (2000, 2007, 2012), Otto - Tzavaras (2008), B - Trivisa (2011). 2. Carrillo et al (2006, 2008, 2011), Mellet - Vasseur (2007, 2008)

  6. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY W EAK S OLUTION The notion of weak solution usually follows from the energy identity. 1. Energy � ρ | u | 2 � � � ρ γ d � |∇ u | 2 + |∇ · u | 2 + 2 |∇ η | 2 � γ − 1 + η 2 + dx + dx dt 2 Ω Ω � � = − ∇ u : σ dx + ( ∇ · u ) η dx . Ω Ω � 2. Entropy : ψ ( t , x ) = S 2 ( f ln f )( t , x , τ ) d τ � � � � 2 � � 2 � � � � � � ψ t + ∇ · ( u ψ ) − ∆ ψ + 4 � ∇ τ f d τ + 4 � ∇ f d τ � � S 2 S 2 = ∇ u : σ − ( ∇ · u ) η. � �� � Otto - Tzavaras

  7. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY The energy-entropy dissipation � � ρ | u | 2 � � ρ γ d γ − 1 + η 2 + ψ |∇ u | 2 + |∇ · u | 2 + 2 |∇ η | 2 � � + dx + dx dt 2 Ω Ω � � � � � � � � 2 2 � � � � � � + 4 � ∇ τ f d τ dx + 4 � ∇ f d τ dx = 0 . � � Ω S 2 Ω S 2 Definition: We say { ρ, u , f , η } is a weak solution if 1. ρ is a renormalized solution, � � ′ ( ρ ) ρ − b ( ρ ) b ( ρ ) t + ∇ · ( b ( ρ ) u ) + b ∇ · u = 0 , 2. { u , f , η } is a distributional solution, 3. { ρ, u , f , η } satisfies the energy-entropy dissipation inequality.

  8. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY T HEOREM Let γ > 3 2 and Ω be a smooth bounded domain. Assume that initial data { ρ 0 , u 0 , f 0 , η 0 } satisfy ρ 0 ∈ L 1 ∩ L γ (Ω) , 2 γ γ + 1 (Ω) , ρ 0 u 0 = m 0 ∈ L m 2 m 2 0 ∈ L 1 (Ω) for ρ 0 � = 0 , 0 = 0 for ρ 0 = 0 , ρ 0 ρ 0 f 0 , f 0 | log f 0 | ∈ L 1 (Ω × S 2 ) , η 0 ∈ L 2 (Ω) . Then, there exists a weak solution { ρ, u , f , η } such that ρ ∈ L p (Ω × ( 0 , T )) , p = 5 γ/ 3 − 1 . H.B and K. Trivisa, To appear in Mathematical Models and Methods in Applied Sciences (M3AS), 2012

  9. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY P ROOF OF T HEOREM 1. Construction of an approximate sequence of solutions via regularization ( P.L.Lions ) ρ t + ∇ · ( ρ u ) = 0 , ( ρ ǫ u ) t + ∇ · (( ρ u ) ǫ ⊗ u ) − ∆ u − ∇ ( ∇ · u ) + ∇ ρ γ + ∇ η 2 = ∇ · σ ǫ − ∇ η ǫ , f t + ∇ · ( u ǫ f ) + ∇ τ · ( P τ ⊥ ( ∇ x u ǫ τ ) f ) − ∆ τ f − ∆ f = 0 , η t + ∇ · ( u ǫ η ) − ∆ η = 0 . = ⇒ � � ρ ǫ | u | 2 � � ρ γ d γ − 1 + η 2 + ψ � |∇ u | 2 + |∇ · u | 2 + 2 |∇ η | 2 � + dx + dx dt 2 Ω Ω � � � � � � 2 � � 2 � � � � � � + 4 � ∇ τ f d τ dx + 4 � ∇ f d τ dx = 0 . � � Ω S 2 Ω S 2

  10. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY 2. Compactness of an approximate sequence (1) ρ ∈ L ∞ ( 0 , T ; L γ (Ω)) is not enough to pass to the limit in ρ γ = ⇒ need to show ρ satisfies a better integrability ( E.Feireisl ) (2) Nonlinear terms in the weak formulation of f : ∂ u ( n ) � � S 2 τ j f ( n ) ∂χ χ ∈ D (Ω × S 2 ) . i d τ dx , ∂ x j ∂τ i Ω � S 2 τ j f ( n ) ∂χ d τ converges strongly in L 2 (Ω × ( 0 , T )) . = ⇒ need to show ∂τ i

  11. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY C OMPACTNESS Suppose an approximate sequence of solutions { ρ n , u n , f n , η n , σ n } n ≥ 1 satisfies the energy/entropy inequality. Then, 1. η n and σ n converges strongly in L 2 (Ω × ( 0 , T )) , 2. ρ n ( η n ) 2 converges weakly to ρη 2 in L 1 + (Ω × ( 0 , T )) , 3. If in addition we assume that ρ n 0 converges to ρ 0 in L 1 (Ω) , then ρ n → ρ in L 1 (Ω × ( 0 , T )) . Lemma (Simon): Let X , B , and Y be Banach spaces such that X ⊂ comp B ⊂ Y . Then, { v ; v ∈ L p ( 0 , T ; X ) , v t ∈ L 1 ( 0 , T ; Y ) } is compactly embedded in L p ( 0 , T ; B ) .

  12. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY 1. Convergence of σ � S 2 ( 3 τ ⊗ τ − I ) f t d τ ∈ L 1 ( 0 , T ; W − 1 , 1 ) , σ t = � S 2 ( 3 τ ⊗ τ − I ) ∇ fd τ ∈ L 3 / 2 ( 0 , T ; L 18 / 11 ) . ∇ σ = 11 ⊂ comp L 2 ⊂ W − 1 , 1 = ⇒ σ n → σ ∈ L W 1 , 18 3 2 ( 0 , T ; L 2 ) . ⇒ σ n → σ ∈ L 2 (Ω × ( 0 , T )) . | σ | ≤ 3 η ∈ L ∞ ( 0 , T ; L 2 ) = 2. Convergence of ρη 2 H 1 ⊂ comp L r ⇒ ( η n ) 2 → η 2 ∈ L 1 + ( 0 , T ; L q ) , ∀ r < 6 = ∀ q < 3 , ⇒ ρ n ( η n ) 2 → ρη 2 ∈ L 1 + (Ω × ( 0 , T )) . 1 /γ < 2 / 3 = ⇒ 1 / q + 1 /γ < 1 =

  13. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY S TRONG C ONVERGENCE OF ρ IN L 1 (Ω × ( 0 , T )) We need to show the weak convergence of { ρ n ln ρ n } . ( ρ ln ρ ) t + ∇ · ( u ρ ln ρ ) + ( ∇ · u ) ρ = 0 , [ ρ γ − 2 ( ∇ · u )] ρ = − ρη 2 + · · · 1. Higher Integrability: θ > 0, depending only γ , such that � ρ � L γ + θ (Ω × ( 0 , T )) ≤ C ( T ) . (Best possible θ is 2 γ/ 3 − 1) ⇒ can pass to the limit to ρ γ = 2. Limit of Effective Viscous Flux � T � T � � [( ρ n ) γ − 2 ∇ · u n ] T k ( ρ n ) dxdt = [ ρ γ − 2 ∇ · u ] T k ( ρ ) dxdt lim n →∞ 0 Ω 0 Ω

  14. I NTRODUCTION B ACKGROUND R ESULTS M ETHODOLOGY 3. Let ρ be a weak limit of the sequence { ρ n } . Then, � T k ( ρ n ) − T k ( ρ ) � L γ + 1 (Ω × ( 0 , T )) ≤ C ( T ) . lim sup n →∞ Note: γ + 1 > 2 . 4. Strong Convergence of ρ : L k ≃ z ln z . � t � � � � � � L k ( ρ ) − L k ( ρ ) dx ≤ T k ( ρ ) − T k ( ρ ) ( ∇ · u ) dxds . Ω 0 Ω = ⇒ ρ ln ρ = ρ ln ρ, t ∈ [ 0 , T ] . for all ⇒ the strong convergence of { ρ n } in L 1 (Ω × ( 0 , T )) . =

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend