the deuteron radius puzzle is alive a new analysis of
play

The deuteron-radius puzzle is alive: A new analysis of nuclear - PowerPoint PPT Presentation

Presented By: Oscar Javier Hernandez The deuteron-radius puzzle is alive: A new analysis of nuclear structure uncertainties In collaboration with: Andreas Ekstrm Nir Nevo Dinur Chen Ji Sonia Bacca Nir Barnea Phys. Lett. B 778, 377-383,


  1. Presented By: Oscar Javier Hernandez The deuteron-radius puzzle is alive: A new analysis of nuclear structure uncertainties In collaboration with: Andreas Ekström Nir Nevo Dinur Chen Ji Sonia Bacca Nir Barnea Phys. Lett. B 778, 377-383, (2018)

  2. The growing proton radius puzzle [Chen et al. 2018, commissioned 1 JPG review arXiv:1806.03101]

  3. There is a discrepancy between eD and μD data [Chen et al. 2018, commissioned 2 JPG review arXiv:1806.03101]

  4. There is a discrepancy between eD and μD data 5.6 σ [Chen et al. 2018, commissioned 2 JPG review arXiv:1806.03101]

  5. There is a discrepancy between eD and μD data 5.6 σ 3.5σ [Chen et al. 2018, commissioned 2 JPG review arXiv:1806.03101]

  6. There is a discrepancy between eD and μD data 5.6 σ Parthey, et al., PRL (2010) 3.5σ [Chen et al. 2018, commissioned 2 JPG review arXiv:1806.03101]

  7. There is a discrepancy between eD and μD data 2.6 σ fm 3

  8. There is a discrepancy between eD and μD data [2014] [2015] 2.6 σ fm 3

  9. There is a discrepancy between eD and μD data [2014] [2015] [2016] 2.6 σ fm 3

  10. There is a discrepancy between eD and μD data [2014] [2015] [2016] [Pohl et. al. Science, Vol 353, 6300, 2016] 2.6 σ fm 3

  11. There is a discrepancy between eD and μD data [2014] [2015] [2016] [Pohl et. al. Science, Vol 353, 6300, 2016] Theoretical TPE is 6 times larger than 2.6 σ experimental uncertainty A thorough analysis may shed light on difference fm and the deuteron puzzle 3

  12. The two-photon exchange μ Nuclear Nucleonic A 4

  13. The two-photon exchange μ Nuclear Nucleonic C. E. Carlson et al. Phys. Rev. A 89, 022504 (2014). A J. J. Krauth, et al. Ann. of Phy. 366, 168 (2016). R.J. Hill, G. Paz Phys. Rev. D, 95 (2017) 4

  14. The two-photon exchange μ Nuclear Nucleonic C. E. Carlson et al. Phys. Rev. A 89, 022504 (2014). A J. J. Krauth, et al. Ann. of Phy. 366, 168 (2016). R.J. Hill, G. Paz Phys. Rev. D, 95 (2017) 4

  15. The two-photon exchange μ Nuclear Nucleonic C. E. Carlson et al. Phys. Rev. A 89, 022504 (2014). A J. J. Krauth, et al. Ann. of Phy. 366, 168 (2016). R.J. Hill, G. Paz Phys. Rev. D, 95 (2017) 4

  16. The evaluation of the nuclear polarizabilty μ A 5

  17. The evaluation of the nuclear polarizabilty μ A 5

  18. The evaluation of the nuclear polarizabilty μ A 5

  19. The expansion of the matrix element Expand the matrix element in terms of scale parameter 6

  20. The expansion of the matrix element Expand the matrix element in terms of scale parameter The scale parameter of the expansion is 6

  21. The expansion of the matrix element Expand the matrix element in terms of scale parameter The scale parameter of the expansion is Perform a multipole expansion of η , leading term 6

  22. The expansion of the matrix element Expand the matrix element in terms of scale parameter The scale parameter of the expansion is Perform a multipole expansion of η , leading term 6

  23. The expansion of the matrix element Sub-sub leading terms are given by 7

  24. The expansion of the matrix element Sub-sub leading terms are given by 7

  25. Finite size corrections μ A Insertion of form factors into the nuclear vertices 8

  26. Finite size corrections μ A Insertion of form factors into the nuclear vertices 8

  27. Additional corrections μ A Addition of coulomb distortion term 9

  28. Additional corrections μ A Addition of coulomb distortion term 9

  29. Additional corrections μ A Addition of coulomb distortion term Relativistic corrections 9

  30. Results for μD 10

  31. Results for μD 10

  32. Improving the uncertainty estimates LO NLO ... N2LO ... 11 Ekström et al., PRL (2013), JPG (2015), Carlsson et al., PRX (2016)

  33. Improving the uncertainty estimates LO NLO Statistical uncertainties: ... N2LO ... 11 Ekström et al., PRL (2013), JPG (2015), Carlsson et al., PRX (2016)

  34. Improving the uncertainty estimates LO NLO Statistical uncertainties: ... Systematic uncertainties: N2LO ... 11 Ekström et al., PRL (2013), JPG (2015), Carlsson et al., PRX (2016)

  35. Improving the uncertainty estimates LO NLO Statistical uncertainties: ... Systematic uncertainties: N2LO ... 11 Ekström et al., PRL (2013), JPG (2015), Carlsson et al., PRX (2016)

  36. Improving the uncertainty estimates LO NLO Statistical uncertainties: ... Systematic uncertainties: N2LO ... Single Nucleon: 11 Ekström et al., PRL (2013), JPG (2015), Carlsson et al., PRX (2016)

  37. Improving the uncertainty estimates LO NLO Statistical uncertainties: ... Systematic uncertainties: N2LO ... Single Nucleon: Higher Order Corrections: 11 Ekström et al., PRL (2013), JPG (2015), Carlsson et al., PRX (2016)

  38. Statistical uncertainties Propagate uncertainty using standard techniques 12

  39. Correlation analysis Serves as a check of the error propagation formalism (N2LOsim) 13

  40. Correlation analysis Serves as a check of the error propagation formalism We observe expected correlations between (N2LOsim) 13

  41. Statistical uncertainties N2LOsim 14

  42. Statistical uncertainties Statistical uncert. Correction % Uncert. Statistical 0.06 N2LOsim 14

  43. Sytematic Tlab uncertainties Systematic Tlab uncert. Correction % Uncert. Statistical 0.06 N2LOsim Tlab Sys. 0.2 14

  44. Chiral truncation uncertainties = ... NLO LO Expand observable in the same Chiral EFT pattern, 15

  45. Chiral truncation uncertainties = ... NLO LO Expand observable in the same Chiral EFT pattern, Truncation uncertainty can then be calculated according to 15

  46. Chiral truncation uncertainties Tlab variation N2LOsim Chiral truncation estimate 16

  47. Chiral truncation uncertainties Tlab variation N2LOsim Chiral truncation estimate Estimate momentum scale of TPE 16

  48. Chiral truncation uncertainties Tlab variation N2LOsim Chiral truncation estimate Estimate momentum scale of TPE Correction % Uncert. Chiral Trunc. 0.4 16

  49. η-expansion uncertainty μ A 17

  50. η-expansion uncertainty μ A 17

  51. η-expansion uncertainty μ A [ insert intermediate nuclear states ] 17

  52. η-expansion uncertainty μ A [ insert intermediate nuclear states ] [ leading to the non-relativistic result ] 17

  53. η-expansion uncertainty μ A [ insert intermediate nuclear states ] [ leading to the non-relativistic result ] Full treatment 17

  54. η-less expansion: Integrated response functions Longitudinal Transverse N3LO(EM) N3LO(EM) 18

  55. η-less expansion: Results N3LO(EM) 18

  56. η-less expansion: Results N3LO(EM) 18

  57. η-less expansion: Results Correction % Uncert. N3LO(EM) η Exp. 0.3 18

  58. Additional uncertainties Two body currents + relativistic corr. Correction % Uncert. NLO MEC 0.05 Seagull Pion-in-flight Rel. Corr. 0.05 19

  59. Additional uncertainties * C. E. Carlson et al. Phys. Rev. A 89, 022504 (2014). J. J. Krauth, et al. Ann. of Phy. 366, 168 (2016). R.J. Hill, G. Paz Phys. Rev. D, 95 (2017) Two body currents + relativistic corr. Correction % Uncert. NLO MEC 0.05 Seagull Pion-in-flight Rel. Corr. 0.05 Single Nucleon Physics Nucleon* 0.6 1.2 19

  60. Additional uncertainties * C. E. Carlson et al. Phys. Rev. A 89, 022504 (2014). J. J. Krauth, et al. Ann. of Phy. 366, 168 (2016). R.J. Hill, G. Paz Phys. Rev. D, 95 (2017) Two body currents + relativistic corr. Correction % Uncert. NLO MEC 0.05 Seagull Pion-in-flight Rel. Corr. 0.05 Single Nucleon Physics Nucleon* 0.6 1.2 Atomic 1.0 Phys. Atomic Physics uncert. 19

  61. Uncertainty comparisons [Krauth et. al. ] [Pohl et. al. Science] 20

  62. Final uncertainty budget +0.008 +0.001 +0.005 +0.0102 +0.0198 +0.172 +0.22 +0.28 meV 21

  63. Summary Krauth et. al. [2016] New Values Carlson et. al. [2016] New Values + 3PE Previous Value [2014,2016] Prev. Value Krauth et. al Exp Experimental 22

  64. Summary Krauth et. al. [2016] New Values Carlson et. al. [2016] New Values + 3PE Previous Value [2014,2016] Prev. Value Krauth et. al New values [2018] Exp Experimental 22

  65. Summary Krauth et. al. [2016] New Values Carlson et. al. [2016] New Values + 3PE [Pachucki et. al 2018] Previous Value [2014,2016] Prev. Value Krauth et. al New values+3PE (Pachucki) [2018] Exp Experimental 22

  66. Outlook Results: Experimental vs theory difference improved by thorough analysis of nuclear TPE uncertainty. Uncertainty in TPE cannot solve the 5.6 σ discrepancy . 23

  67. Outlook Results: Experimental vs theory difference improved by thorough analysis of nuclear TPE uncertainty. Uncertainty in TPE cannot solve the 5.6 σ discrepancy . Uncertainty Analysis: Reduce atomic physics uncert. Correction μH μ3H μ3He μ4He Higher (Zα) 0.7 0.7 1.5 1.5 η Exp. 0.3 0.9 0.3 0.2 Etaless Expansion: Apply formalism to A=3 systems Extend formalism for HFS 23

  68. Thank you! Presented By: Oscar Javier Hernandez

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend