the coupling method and operator relations
play

The coupling method and operator relations Sanne ter Horst 1 - PowerPoint PPT Presentation

The coupling method and operator relations Sanne ter Horst 1 North-West University IWOTA 2017 Chemnitz, Germany Joint work with M. Messerschmidt, A.C.M. Ran, M. Roelands and M. Wortel 1 This work is based on the research supported in part by


  1. The coupling method and operator relations Sanne ter Horst 1 North-West University IWOTA 2017 Chemnitz, Germany Joint work with M. Messerschmidt, A.C.M. Ran, M. Roelands and M. Wortel 1 This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Numbers 90670, and 93406).

  2. Outline • Application of the Coupling Method • Formalization of the Coupling Method Three Banach space operator relations: MC, EAE and SC • Question 1: Do MC, EAE and SC coincide • Question 2: When are two operators MC/EAE/SC?

  3. The Coupling Method for integral equations Integral operators with semi-separable kernel Define � τ K : L 2 n [0 , τ ] → L 2 ( f ∈ L 2 n [0 , τ ] , ( Kf )( t ) = k ( t , s ) f ( s ) ds , n [0 , τ ]) . 0 Here � C ( t )( I − P ) B ( s ) , s < t ; k ( s , t ) = − C ( t ) PB ( s ) , s > t , with P ∈ Mat n × n a projection and C , B ∈ L 2 n × n [0 , τ ]. C Then K is Hilbert-Schmidt, so I − K is Fredholm. Integral equation: Given g ∈ L 2 n [0 , τ ], find f ∈ L 2 n [0 , τ ] with � τ g = ( I − K ) f , i . e ., g ( t ) = f ( t ) − k ( t , s ) f ( s ) ds . 0

  4. The Coupling Method for integral equations Integral operators with semi-separable kernel Define � τ K : L 2 n [0 , τ ] → L 2 ( f ∈ L 2 n [0 , τ ] , ( Kf )( t ) = k ( t , s ) f ( s ) ds , n [0 , τ ]) . 0 Here � C ( t )( I − P ) B ( s ) , s < t ; k ( s , t ) = − C ( t ) PB ( s ) , s > t , with P ∈ Mat n × n a projection and C , B ∈ L 2 n × n [0 , τ ]. C Then K is Hilbert-Schmidt, so I − K is Fredholm. Integral equation: Given g ∈ L 2 n [0 , τ ], find f ∈ L 2 n [0 , τ ] with � τ g = ( I − K ) f , i . e ., g ( t ) = f ( t ) − k ( t , s ) f ( s ) ds . 0 Associated system With B and C we associate the differential equation: x ( t ) = B ( t ) C ( t ) x ( t ) ˙ ( t ∈ [0 , τ ]) . Write U : [0 , τ ] → Mat n × n for the associated fundamental matrix. C

  5. The Coupling Method for integral equations Bart-Gohberg-Kaashoek ’84 Define S τ = PU ( τ ) P : Im P → Im P

  6. The Coupling Method for integral equations Bart-Gohberg-Kaashoek ’84 Define S τ = PU ( τ ) P : Im P → Im P and � τ H : L 2 n [0 , τ ] → L 2 n [0 , τ ] , ( Hf )( t ) = C ( t ) B ( s ) f ( s ) ds ; 0 � τ Q : L 2 n [0 , τ ] → Im P , Qf = P B ( s ) f ( s ) ds 0 R : Im P → L 2 n [0 , τ ] , ( Qx )( t ) = C ( t ) Px . Then I − H is invertible and � I − K � − 1 � � ( I − H ) − 1 ( I − H ) − 1 R − R = . (MC) Q ( I − H ) − 1 − Q I S τ

  7. The Coupling Method for integral equations Bart-Gohberg-Kaashoek ’84 Define S τ = PU ( τ ) P : Im P → Im P and � τ H : L 2 n [0 , τ ] → L 2 n [0 , τ ] , ( Hf )( t ) = C ( t ) B ( s ) f ( s ) ds ; 0 � τ Q : L 2 n [0 , τ ] → Im P , Qf = P B ( s ) f ( s ) ds 0 R : Im P → L 2 n [0 , τ ] , ( Qx )( t ) = C ( t ) Px . Then I − H is invertible and � I − K � − 1 � � ( I − H ) − 1 ( I − H ) − 1 R − R = . (MC) Q ( I − H ) − 1 − Q I S τ Moreover, there exist invertible operators E and F such that � I − K � � S τ � 0 0 = E F . (EAE) 0 I L 2 0 I Im P n [0 ,τ ] � I � − R The Schur complements of are given by Q I − H S τ = I + Q ( I − H ) − 1 R . I − K = ( I − H ) + RQ and (SC)

  8. The Coupling Method for integral equations Fredholm properties The identity � I − K � � S τ � 0 0 = E F 0 I Im P 0 I L 2 n [0 ,τ ] with E and F invertible yields: I − K (on L 2 n [0 , τ ]) and S τ (on Im P ) have the same ’Fredholm properties.’ And one can show: Ker ( I − K ) = ( I − H ) − 1 R Ker S τ Im ( I − K ) = { f : Q ( I − H ) − 1 f ∈ Im S τ } . and

  9. The Coupling Method for integral equations Fredholm properties The identity � I − K � � S τ � 0 0 = E F 0 I Im P 0 I L 2 n [0 ,τ ] with E and F invertible yields: I − K (on L 2 n [0 , τ ]) and S τ (on Im P ) have the same ’Fredholm properties.’ And one can show: Ker ( I − K ) = ( I − H ) − 1 R Ker S τ Im ( I − K ) = { f : Q ( I − H ) − 1 f ∈ Im S τ } . and Generalized inverse � I � − R Expressing the Moore-Penrose generalized inverse of in terms of its Q I − H Schur complements one can compute the MP generalized inverse of I − K : ( I + K ) + = ( I − H ) − 1 − ( I − H ) − 1 RS + τ Q ( I − H ) − 1 , and solve the integal equation: f = ( I + K ) + g , if g ∈ Im ( I − K ) .

  10. The Coupling Method: Formalization Two Banach space operators U : X → X and V : Y → Y are called matricially coupled (MC), equivalent after extension (EAE) resp. Schur coupled (SC) if: � X � � X � (MC) There exist an invertible operator � U : → such that Y Y � � � V 11 � U U 12 V 12 U − 1 = � � U = and . U 21 U 22 V 21 V (EAE) There exist Banach spaces X 0 and Y 0 and invertible operators E and F s.t. � U � V � � 0 0 = E F . 0 I X 0 0 I Y 0 � X � � X � (SC) There exists an operator matrix S = [ A B C D ] : → with A and D Y Y invertible and U = A − BD − 1 C , V = D − CA − 1 B .

  11. The Coupling Method: Formalization Two Banach space operators U : X → X and V : Y → Y are called matricially coupled (MC), equivalent after extension (EAE) resp. Schur coupled (SC) if: � X � � X � (MC) There exist an invertible operator � U : → such that Y Y � � � V 11 � U U 12 V 12 U − 1 = � � U = and . U 21 U 22 V 21 V (EAE) There exist Banach spaces X 0 and Y 0 and invertible operators E and F s.t. � U � V � � 0 0 = E F . 0 I X 0 0 I Y 0 � X � � X � (SC) There exists an operator matrix S = [ A B C D ] : → with A and D Y Y invertible and U = A − BD − 1 C , V = D − CA − 1 B . In the example I − K and S τ are MC ⇒ I − K and S τ are EAE ⇒ I − K and S τ are SC ⇓ ⇓ Fredholm properties generalized inverse

  12. The Coupling Method: Formalization Two Banach space operators U : X → X and V : Y → Y are called matricially coupled (MC), equivalent after extension (EAE) resp. Schur coupled (SC) if: � X � � X � (MC) There exist an invertible operator � U : → such that Y Y � � � V 11 � U U 12 V 12 U − 1 = � � U = and . U 21 U 22 V 21 V (EAE) There exist Banach spaces X 0 and Y 0 and invertible operators E and F s.t. � U � V � � 0 0 = E F . 0 I X 0 0 I Y 0 � X � � X � (SC) There exists an operator matrix S = [ A B C D ] : → with A and D Y Y invertible and U = A − BD − 1 C , V = D − CA − 1 B . More recent applications • Diffraction theory (Castro, Duduchava, Speck, e.g., 2014) • Truncated Toeplitz operators (Cˆ amara, Partington, 2016) • Connection with Paired Operators approach (Speck, 2017) • Wiener-Hopf factorization (Groenewald, Kaashoek, Ran, 2017)

  13. The Coupling Method: Formalization Two Banach space operators U : X → X and V : Y → Y are called matricially coupled (MC), equivalent after extension (EAE) resp. Schur coupled (SC) if: � X � � X � (MC) There exist an invertible operator � U : → such that Y Y � � � V 11 � U U 12 V 12 U − 1 = � � U = and . U 21 U 22 V 21 V (EAE) There exist Banach spaces X 0 and Y 0 and invertible operators E and F s.t. � U � V � � 0 0 = E F . 0 I X 0 0 I Y 0 � X � � X � (SC) There exists an operator matrix S = [ A B C D ] : → with A and D Y Y invertible and U = A − BD − 1 C , V = D − CA − 1 B . More recent applications • Completeness theorems in dynamical systems (Kaashoek, Verduyn Lunel) • Unbounded operator functions (Engstr¨ om, Torshage, Arxiv)

  14. Do MC, EAE and SC coincide? Question (Bart-Tsekanovskii ’92) Do the operator relations MC, EAE and SC coincide?

  15. Do MC, EAE and SC coincide? Question (Bart-Tsekanovskii ’92) Do the operator relations MC, EAE and SC coincide? ⇐ ⇒ ⇐ MC EAE = SC Early results • Bart-Gohberg-Kaashoek ’84: MC ⇒ EAE • Bart-Tsekanovskii ’92: EAE ⇒ MC (so EAE ⇔ MC) • Bart-Tsekanovskii ’94: SC ⇒ EAE Proof MC = ⇒ EAE � � � � � U � � V � − U 21 I Y 0 0 U 12 U = E F holds with E = and F = and 0 I Y 0 I X U 22 U 21 V 11 U V 12 � V 21 � � − V 12 � V I E − 1 = F − 1 = , . V 11 V 12 U 22 V U 21

  16. Do MC, EAE and SC coincide? Question (Bart-Tsekanovskii ’92) Do the operator relations MC, EAE and SC coincide? ⇐ ⇒ ⇐ MC EAE = SC Early results • Bart-Gohberg-Kaashoek ’84: MC ⇒ EAE • Bart-Tsekanovskii ’92: EAE ⇒ MC (so EAE ⇔ MC) • Bart-Tsekanovskii ’94: SC ⇒ EAE • Remaining implication: Does EAE ⇒ SC hold?

  17. Do MC, EAE and SC coincide? Question (Bart-Tsekanovskii ’92) Do the operator relations MC, EAE and SC coincide? ⇐ ⇒ ⇐ MC EAE = SC Early results • Bart-Gohberg-Kaashoek ’84: MC ⇒ EAE • Bart-Tsekanovskii ’92: EAE ⇒ MC (so EAE ⇔ MC) • Bart-Tsekanovskii ’94: SC ⇒ EAE • Remaining implication: Does EAE ⇒ SC hold? • BT’92: Yes if U and V are Fredholm (Banach space: + index = 0) • BGKR’05: Yes if SC is an equivalence relation (this is true for EAE) (BT=Bart-Tsekanovskii, BGKR=Bart-Gohberg-Kaashoek-Ran)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend