the characterization of weihrauch reducibility in
play

The characterization of Weihrauch reducibility in systems containing - PowerPoint PPT Presentation

The characterization of Weihrauch reducibility in systems containing E-PA + QF-AC 0 , 0 Patrick Uftring September 8, 2020 1/30 Motivation We represent problems as formulas: P := x ( A ( x ) y B ( x , y ) ).


  1. The characterization of Weihrauch reducibility in systems containing E-PA ω + QF-AC 0 , 0 Patrick Uftring September 8, 2020 1/30

  2. Motivation We represent problems as formulas: P := ∀ x ( A ( x ) → ∃ y B ( x , y ) ). ���� � �� � domain matrix Can we find a system of (at least) second-order arithmetic A and a calculus C such that the following holds for two problems P and Q ? A ⊢ ” Q ≤ W P ” ⇔ C ⊢ P ′ → Q ′ . 2/30

  3. Results in this direction Theorem (Hirst and Mummert 2019) Suppose P and Q are nice problems of the form P := ∀ x ( A ( x ) → ∃ yB ( x , y )) Q := ∀ u ( C ( u ) → ∃ vD ( u , v )) . then the following are equivalent: a) i RCA ω 0 proves Q with one typical use of P, b) i RCA ω 0 ⊢ Q ≤ W P. Theorem (Fujiwara 2020) Several characterization results of Weihrauch reducibility in ω ↾ + AC ω / Π 0 E-PA ω / � 1 -AC 0 , 0 / QF-AC 0 , 0 . E-PA Both results rely on a special proof structure 3/30

  4. A first approach Theorem 6.4 (Kuyper JSL 2017) Characterizes compositional Weihrauch reducibility in RCA 0 using EL 0 (elementary intuitionistic analysis)+ MP (Markov’s principle). Theorem 7.1 (Kuyper JSL 2017) Characterizes Weihrauch reducibility in RCA 0 using (EL 0 + MP) ∃ α a that is defined like EL 0 + MP but ◮ contraction is only allowed for formulas without function quantifiers and ◮ weakening is only allowed for subformulas of ∃ α A where A does not contain function quantifiers. Counterexamples (Uftring M.Sc. thesis 2018) But the general idea seems to be correct. 4/30

  5. The goal Consider P : ≡ ∀ x 1 ( A ( x ) → ∃ y 1 B ( x , y )) Q : ≡ ∀ u 1 ( C ( u ) → ∃ v 1 D ( u , v )) Theorem (Simplified) The following are equivalent: ℓ +Γ • proves P ′ ⊸ Q ′ a) E-LPA ω b) E-PA ω + QF-AC 0 , 0 +Γ proves Q ≤ W P 5/30

  6. Linear Logic Every formula is a resource Symbols of linear logic ◮ Conjunctions: A ⊗ B , A & B & ◮ Disjunctions: A B , A ⊕ B ◮ Modal: ! A , ? A ◮ Involution: A ⊥ ◮ Abbreviation: ( A ⊸ B ) : ≡ A ⊥ & B Embedding of classical logic into linear logic A • : ≡ A where A is atomic, ( ¬ A ) • : ≡ ( A • ) ⊥ , ( A ∧ B ) • : ≡ A • ⊗ B • , ( A ∨ B ) • : ≡ A • & B • , ( A → B ) • : ≡ A • ⊸ B • . 6/30

  7. Linear Logic (Intuition) Every argument must be used exactly once: Examples ⊢ A ⊗ B ⊸ B ⊗ A ⊢ A ⊸ ( B ⊸ A ⊗ B ) � A ⊸ A ⊗ A We cannot simply multiply A . ⊢ ! A ⊸ A ⊗ A We may use ! A as often as we like. � A ⊗ B ⊸ A We must use B . ⊢ A ⊗ ! B ⊸ A We may choose to use ! B not at all. Dualities ( A ⊗ B ) ⊥ ≡ A ⊥ & B ⊥ (! A ) ⊥ ≡ ? A ⊥ & Connectives and “?” do not have a simple intuition. 7/30

  8. Motivating a linear predicate Problem: Quantifiers in problems cause problems Solution: Proof theory on nonstandard arithmetic (van den Berg, Briseid, Safarik 2012) Standard Predicate ◮ st( x ) ∧ x = y → st( y ) ◮ st( t c ) where t c is closed ◮ st( f ) ∧ st( x ) → st( fx ) ◮ Φ(0) ∧ ∀ st n 0 (Φ( n ) → Φ( n + 1)) → ∀ st n 0 Φ( n ) Nonstandard Dialectica only extracts information about standard values. Idea: Adapt this predicate to linear logic ◮ Only extract information about the Weihrauch reduction ◮ Uniform extraction that works with problems involving quantifiers 8/30

  9. E-LPA ω ℓ Extensional Linear Peano Arithmetic in all finite types with linear predicate consists of the following three parts: ◮ The axioms and rules of linear logic, ◮ The axioms of E-PA ω translated to linear logic, ◮ Additional axioms for the new linear predicate ℓ : ⊢ A ⊥ ⊢ ℓ ( t c ) ⊢ ℓ ( t ) ⊸ ℓ ( t ) ⊗ ℓ ( t ) nl , ! A nl ⊢ ℓ ⊥ ( t ) , ℓ ⊥ ( r ) , ℓ ( tr ) ⊢ ( ∀ x 0 ∃ y 0 α xy = 0 0) ⊥ , ∃ Y 1 ( ∀ x 0 ( α x ( Yx ) = 0 0) ⊗ !( ℓ ( α ) ⊸ ℓ ( Y ))) Abbreviations: ∀ ℓ xA : ≡ ∀ x ( ℓ ( x ) ⊸ A ) ∃ ℓ xA : ≡ ∃ x ( ℓ ( x ) ⊗ A ) ∃ ℓ ǫ xA : ≡ ∃ x ( ℓ ( x ) ⊗ ǫ = 0 0 ⊗ A ) For ǫ := 0 and ǫ := 1, ∃ ℓ ǫ xA behaves like ∃ ℓ xA and ⊥ , respectively. 9/30

  10. Formalization of Weihrauch reducibility Problems P : ≡ ∀ x 1 ( A ( x ) → ∃ y 1 B ( x , y )) Q : ≡ ∀ u 1 ( C ( u ) → ∃ v 1 D ( u , v )) In E-LPA ω P ′ : ≡ ∀ ℓ x 1 ( A • ( x ) ⊸ ∃ ℓ ℓ ǫ y 1 B • ( x , y )) Q ′ : ≡ ∀ ℓ u 1 ( C • ( u ) ⊸ ∃ ℓ ǫ v 1 D • ( u , v )) Weihrauch reducibility formalized using associates There are closed terms t and s such that the formulas ∀ u 1 ( C ( u ) → t · u ↓ ∧ A ( t · u )) ∀ u 1 , y 1 ( C ( u ) ∧ B ( t · u , y ) → s · j ( u , y ) ↓ ∧ D ( u , s · j ( u , y ))) and hold. 10/30

  11. The Characterization of Weihrauch reducibility Theorem (Uftring 2018, 2020) Let A ( x 1 ) , B ( x , y 1 ) , C ( u 1 ) , and D ( u , v 1 ) be formulas of E-PA ω . Let Γ be a set of formulas of the same language. Consider: ⊢ ∀ ℓ x 1 ( A • ( x ) ⊸ ∃ ℓ ǫ y 1 B • ( x , y )) ⊸ ∀ ℓ u 1 ( C • ( u ) ⊸ ∃ ℓ ǫ v 1 D • ( u , v )) . The following are equivalent: ℓ +Γ • proves the sequent. a) E-LPA ω ℓ +Γ • proves the sequent. b) E-APA ω c) E-PA ω + QF-AC 0 , 0 +Γ proves both C ( u ) → t · u ↓ ∧ A ( t · u ) and C ( u ) ∧ B ( t · u , y ) → s · j ( u , y ) ↓ ∧ D ( u , s · j ( u , y )) for some closed terms t 1 and s 1 of L (E-PA ω ) . 11/30

  12. G¨ odel’s Dialectica interpretation for linear logic Inspired by work due to de Paiva (1991), Shirahata (2006), and Oliva (2008-2011): | A | : ≡ A for unnegated + nonlinear atomic A , u ) ⊥ for unnegated atomic A , | A ⊥ | u : ≡ ( | A | v v | A ⊕ B | x , u , k 0 : ≡ (! k = 0 0 ⊗ | A | x y ) ⊕ (! k � = 0 0 ⊗ | B | u v ), y , v | A & B | x , u y , v , k 0 : ≡ (! k = 0 0 ⊸ | A | x y ) & (! k � = 0 0 ⊸ | B | u v ), & B | f , g : ≡ | A | fu & | B | gx | A u , x , u x | A ⊗ B | x , u : ≡ | A | x fu ⊗ | B | u gx , f , g |∃ zA | x : ≡ ∃ z | A | x y , y |∀ zA | x : ≡ ∀ z | A | x y , y : ≡ ? ∃ x | A | x | ? A | y y , | ! A | x : ≡ ! ∀ y | A | x y . Biggest modification: Quantified values are not interpreted 12/30

  13. Interpretation of the linear predicate Interpreting the standard predicate (simplified) | st( t ) | x : ≡ x = t Constructing a term � 0 : ≡ 1, � ( τρ ) : ≡ � τ� ρ . Hereditary version of associates (Kleene, Kreisel 1959) con 0 ( s 1 , t 0 ) : ≡ ∃ x 0 ( sx � = 0 0) ∧ ∀ x 0 ( sx � = 0 0 → sx = 0 t + 1), con τρ ( s � τρ , t τρ ) : ≡ ∀ x � ρ , y ρ (con ρ ( x , y ) → con τ ( sx , ty )). Theorem: For each closed term t there is some ˜ t with con(˜ t , t ). Interpreting the linear predicate | ℓ ( t ) | x : ≡ con • ( x , t ) 13/30

  14. “History” of our functional interpretation G¨ odel’s Dialectica Linear Dialectica Nonstandard Dialectica (de Paiva 91 / Shirahata 06) (van den Berg, Briseid, Safarik 12) + Oliva 08–11 Linear Dialectica + linear predicate Linear Dialectica + linear predicate + computability 14/30

  15. Soundness Theorem of Dialectica for E-LPA ω ℓ Theorem Let A 1 , . . . , A n be formulas of L (E-LPA ω ℓ ) , and Γ a set of formulas ℓ +Γ • (or E-APA ω in L (E-PA ω ) , and assume that E-LPA ω ℓ +Γ • ) proves ⊢ A 1 , . . . , A n . ℓ +Γ • (or E-APA ω then E-LPA ω ℓ +Γ • ) proves ⊢ | A 1 | a 0 x 0 , . . . , | A n | a n x n for tuples of terms a 0 , . . . , a n where the free variables of each a i are among those in the sequence of terms x 0 , . . . , x i − 1 , x i +1 , . . . , x n . In particular, the variables x i are not free in a i . Proof. Induction on the proof length, i.e., for all rules. 15/30

  16. Proof sketch for the Characterization Theorem ℓ +Γ • + QF-AC 0 , 0 : Given a proof of the following in E-LPA ω ⊢ ∀ ℓ x 1 ( A • ( x ) ⊸ ∃ ℓ ǫ y 1 B • ( x , y )) ⊸ ∀ ℓ u 1 ( C • ( u ) ⊸ ∃ ℓ ǫ v 1 D • ( u , v )). “ ǫ := 1” ⊢ ∀ ℓ x 1 ( A • ( x ) ⊸ ⊥ )) ⊸ ∀ ℓ u 1 ( C • ( u ) ⊸ ⊥ ). Extract term t ′ mapping each ˜ u with C ( u ) to an ˜ x with A ( x ) ⇒ Associate t computing for each u with C ( u ) an x with A ( x ) “ ǫ := 0” + previous result ⊢ ∀ ℓ u 1 ( ∃ ℓ y 1 B • ( t · u , y ) ⊸ C • ( u ) ⊸ ∃ ℓ v 1 D • ( u , v )). Extract term s ′ mapping each ˜ u , ˜ y with B ( t · u , y ) and C ( u ) to ˜ v with D ( u , v ). ⇒ Associate s computing for each u and y with B ( t · u , y ) and C ( u ) a v with D ( u , v ). Associates t and s compute the Weihrauch reduction in E-PA ω +Γ 16/30

  17. The Characterization of Weihrauch reducibility (pretty) Theorem (Uftring 2020) Let A ( x 1 ) , B ( x , y 1 ) , C ( u 1 ) , and D ( u , v 1 ) be formulas of E-PA ω . Let Γ be a set of formulas of the same language. Consider: ⊢ ∀ ℓ x 1 ( A • ( x ) ⊸ ∃ ℓ y 1 B • ( x , y )) ⊸ ∀ ℓ u 1 ( C • ( u ) ⊸ ∃ ℓ v 1 D • ( u , v )) . The following are equivalent: ℓ +Γ • proves the sequent. a) E-LPA ω ℓ +Γ • proves the sequent. b) E-APA ω c) E-PA ω + QF-AC 0 , 0 +Γ proves both C ( u ) → t · u ↓ ∧ A ( t · u ) and C ( u ) ∧ B ( t · u , y ) → s · j ( u , y ) ↓ ∧ D ( u , s · j ( u , y )) for some closed terms t 1 and s 1 of L (E-PA ω ) . 17/30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend