the behavioral approach to systems theory
play

The Behavioral Approach to Systems Theory Paolo Rapisarda, Un. of - PowerPoint PPT Presentation

The Behavioral Approach to Systems Theory Paolo Rapisarda, Un. of Southampton, U.K. & Jan C. Willems, K.U.Leuven, Belgium MTNS 2006 Kyoto, Japan, July 2428, 2006 Lecture 4: Bilinear and quadratic differential forms Lecturer: Paolo


  1. The Behavioral Approach to Systems Theory Paolo Rapisarda, Un. of Southampton, U.K. & Jan C. Willems, K.U.Leuven, Belgium MTNS 2006 Kyoto, Japan, July 24–28, 2006

  2. Lecture 4: Bilinear and quadratic differential forms Lecturer: Paolo Rapisarda

  3. Part I: Basics

  4. Outline Motivation and aim Definition Two-variable polynomial matrices The calculus of B/QDFs

  5. Dynamics and functionals in systems and control Instances: Lyapunov theory, performance criteria, etc. ⇒ quadratic and bilinear functionals. Linear case =

  6. Dynamics and functionals in systems and control Instances: Lyapunov theory, performance criteria, etc. ⇒ quadratic and bilinear functionals. Linear case = Usually: state-space equations, constant functionals. However, tearing and zooming = ⇒ state space eq.s

  7. Dynamics and functionals in systems and control Instances: Lyapunov theory, performance criteria, etc. ⇒ quadratic and bilinear functionals. Linear case = Usually: state-space equations, constant functionals. However, tearing and zooming = ⇒ state space eq.s ¡High-order differential equations! ...involving also latent variables ...

  8. Example : a mechanical system d 2 w 1 m 1 + k 1 w 1 − k 1 w 2 = 0 dt 2 d 2 w 2 − k 1 w 1 + m 2 + ( k 1 + k 2 ) w 2 = 0 dt 2

  9. Example : a mechanical system d 2 w 1 m 1 + k 1 w 1 − k 1 w 2 = 0 dt 2 d 2 w 2 − k 1 w 1 + m 2 + ( k 1 + k 2 ) w 2 = 0 dt 2 dt 4 w + ( k 1 m 1 + k 2 m 1 + k 1 m 2 ) d 2 d 4 m 1 m 2 dt 2 w + k 1 k 2 w = 0

  10. Example : a mechanical system d 2 w 1 m 1 + k 1 w 1 − k 1 w 2 = 0 dt 2 d 2 w 2 − k 1 w 1 + m 2 + ( k 1 + k 2 ) w 2 = 0 dt 2 dt 4 w + ( k 1 m 1 + k 2 m 1 + k 1 m 2 ) d 2 d 4 m 1 m 2 dt 2 w + k 1 k 2 w = 0 ¿Stability, stored energy, conservation laws?

  11. Aim An effective algebraic representation of bilinear and quadratic functionals of the system variables and their derivatives: Operations/properties of functionals � algebraic operations/properties of representation ...a calculus of these functionals!

  12. Outline Motivation and aim Definition Two-variable polynomial matrices The calculus of B/QDFs

  13. Bilinear differential forms (BDFs) � Φ k ,ℓ ∈ R w 1 × w 2 � Φ := k ,ℓ = 0 ,..., L L Φ : C ∞ ( R , R w 1 ) × C ∞ ( R , R w 2 ) → C ∞ ( R , R )   Φ 0 , 0 Φ 0 , 1 . . .   Φ 1 , 0 Φ 1 , 1 . . . w 2   . .   � � dw 2 . . ⊤ L Φ ( w 1 , w 2 ) := dw 1 · · · w ⊤ . . . . .     dt 1 dt   . Φ k , 0 Φ k , 1 . . . .   . . . . . . . · · · � � ⊤ � � = � d k d ℓ dt k w 1 Φ k ,ℓ dt ℓ w 2 k ,ℓ

  14. Quadratic differential forms (QDFs) � Φ k ,ℓ ∈ R w × w � k ,ℓ = 0 ,..., L symmetric, i.e. Φ k ,ℓ = Φ ⊤ Φ := ℓ, k Q Φ : C ∞ ( R , R w ) → C ∞ ( R , R )   Φ 0 , 0 Φ 0 , 1 . . .   Φ 1 , 0 Φ 1 , 1 . . . w   . . � �   dw . . ⊤ Q Φ ( w ) := dw w ⊤ . . · · ·     . . . dt dt   . Φ k , 0 Φ k , 1 . . . .   . . . . . · · · . . � � ⊤ � � = � L d k d ℓ dt k w Φ k ,ℓ dt ℓ w k ,ℓ = 0

  15. Example: total energy in mechanical system �� d � d � 2 � � 2 1 dt w 1 + dt w 2 2 + 1 � � k 1 w 2 1 + k 2 w 2 2 2     1 2 k 1 0 0 0 w 1 1 w 2 0 2 k 2 0 0     � � d d w 1 w 2 dt w 1 dt w 2     d 1 dt w 1 0 0 0     2 d 1 dt w 2 0 0 0 2

  16. Outline Motivation and aim Definition Two-variable polynomial matrices The calculus of B/QDFs

  17. Two-variable polynomial matrices for BDFs � Φ k ,ℓ ∈ R w 1 × w 2 � k ,ℓ = 0 ,..., L L ( d k d ℓ � dt k w 1 ) ⊤ Φ k ,ℓ L Φ ( w 1 , w 2 ) = dt ℓ w 2 k ,ℓ = 0 Φ( ζ, η ) = � L k ,ℓ = 0 Φ k ,ℓ ζ k η ℓ

  18. Two-variable polynomial matrices for BDFs � Φ k ,ℓ ∈ R w 1 × w 2 � k ,ℓ = 0 ,..., L L ( d k d ℓ � dt k w 1 ) ⊤ Φ k ,ℓ L Φ ( w 1 , w 2 ) = dt ℓ w 2 k ,ℓ = 0 Φ( ζ, η ) = � L k ,ℓ = 0 Φ k ,ℓ ζ k η ℓ

  19. Two-variable polynomial matrices for BDFs � Φ k ,ℓ ∈ R w 1 × w 2 � k ,ℓ = 0 ,..., L L ( d k d ℓ � dt k w 1 ) ⊤ Φ k ,ℓ L Φ ( w 1 , w 2 ) = dt ℓ w 2 k ,ℓ = 0 Φ( ζ, η ) = � L k ,ℓ = 0 Φ k ,ℓ ζ k η ℓ 2-variable polynomial matrix associated with L Φ

  20. Two-variable polynomial matrices for QDFs � Φ k ,ℓ ∈ R w × w � k ,ℓ = 0 ,..., L symmetric (Φ k ,ℓ = Φ ⊤ ℓ, k ) L ( d k d ℓ � dt k w ) ⊤ Φ k ,ℓ Q Φ ( w ) = dt ℓ w k ,ℓ = 0 Φ( ζ, η ) = � L k ,ℓ = 0 Φ k ,ℓ ζ k η ℓ symmetric : Φ( ζ, η ) = Φ( η, ζ ) ⊤

  21. Example: total energy in mechanical system     1 2 k 1 0 0 0 w 1 1 w 2 0 2 k 2 0 0 � �     d d Q E ( w 1 , w 2 ) = w 1 w 2 dt w 1 dt w 2     d 1 dt w 1 0 0 0     2 d 1 dt w 2 0 0 0 2 � 1 � � 1 � 2 k 1 0 2 ζη 0 E ( ζ, η ) = + 1 1 0 2 k 2 0 2 ζη

  22. Historical intermezzo

  23. Historical intermezzo stability tests (‘60s)

  24. Historical intermezzo path integrals (‘60s) stability tests (‘60s)

  25. Historical intermezzo Lyapunov functionals (‘80s) path integrals (‘60s) stability tests (‘60s)

  26. Historical intermezzo Lyapunov functionals (‘80s) path integrals (‘60s) stability tests (‘60s) QDFs (1998)

  27. Outline Motivation and aim Definition Two-variable polynomial matrices The calculus of B/QDFs

  28. The calculus of B/QDFs Using powers of ζ and η as placeholders, B/QDF � two-variable polynomial matrix

  29. The calculus of B/QDFs Using powers of ζ and η as placeholders, B/QDF � two-variable polynomial matrix Operations algebraic and properties operations/properties � of B/QDF on two-variable matrix

  30. Differentiation • Φ ∈ R w × w [ ζ, η ] . Φ derivative of Q Φ : s Φ : C ∞ ( R , R w ) → C ∞ ( R , R ) Q • Φ ( w ) := d Q • dt ( Q Φ ( w )) • Φ( ζ, η ) = ( ζ + η )Φ( ζ, η ) Two-variable version of Leibniz’s rule

  31. Integration D ( R , R • ) C ∞ -compact-support trajectories L Φ : D ( R , R w 1 ) × D ( R , R w 2 ) → D ( R , R ) � L Φ : D ( R , R w 1 ) × D ( R , R w 2 ) → R � + ∞ � L Φ ( w 1 , w 2 ) := −∞ L Φ ( w 1 , w 2 ) dt Analogous for QDFs

  32. Part II: Applications

  33. Outline Lyapunov theory Dissipativity theory Balancing and model reduction

  34. Nonnegativity and positivity along a behavior B Q Φ ≥ 0 if Q Φ ( w ) ≥ 0 ∀ w ∈ B

  35. Nonnegativity and positivity along a behavior B Q Φ ≥ 0 if Q Φ ( w ) ≥ 0 ∀ w ∈ B B B Q Φ > 0 if Q Φ ≥ 0, and [ Q Φ ( w ) = 0 ] = ⇒ [ w = 0 ]

  36. Nonnegativity and positivity along a behavior B Q Φ ≥ 0 if Q Φ ( w ) ≥ 0 ∀ w ∈ B B B Q Φ > 0 if Q Φ ≥ 0, and [ Q Φ ( w ) = 0 ] = ⇒ [ w = 0 ] B Prop.: Let B = ker R ( d ≥ 0 iff there exist dt ) . Then Q Φ D ∈ R •× w [ ξ ] , X ∈ R •× w [ ζ, η ] such that Φ( ζ, η ) = D ( ζ ) ⊤ D ( η ) + R ( ζ ) ⊤ X ( ζ, η ) + X ( η, ζ ) ⊤ R ( η ) � �� � � �� � ≥ 0 for all w = 0 if evaluated on B

  37. Lyapunov theory B autonomous is asymptotically stable iflim t →∞ w ( t ) = 0 ∀ w ∈ B B = ker R ( d dt ) stable ⇐ ⇒ det ( R ) Hurwitz

  38. Lyapunov theory B autonomous is asymptotically stable iflim t →∞ w ( t ) = 0 ∀ w ∈ B B = ker R ( d dt ) stable ⇐ ⇒ det ( R ) Hurwitz Theorem: B asymptotically stable iff B B exists Q Φ such that Q Φ ≥ 0 and Q • < 0 Φ

  39. Example � � d 2 r ( ξ ) = ξ 2 + 3 ξ + 2 dt 2 + 3 d B = ker dt + 2

  40. Example � � d 2 r ( ξ ) = ξ 2 + 3 ξ + 2 dt 2 + 3 d B = ker dt + 2 B < 0, e.g. Ψ( ζ, η ) = − ζη ; Choose Ψ( ζ, η ) s.t. Q Ψ

  41. Example � � d 2 r ( ξ ) = ξ 2 + 3 ξ + 2 dt 2 + 3 d B = ker dt + 2 B < 0, e.g. Ψ( ζ, η ) = − ζη ; Choose Ψ( ζ, η ) s.t. Q Ψ d Find Φ( ζ, η ) s.t. dt Q Φ ( w ) = Q Ψ ( w ) for all w ∈ B : ( ζ + η )Φ( ζ, η ) = Ψ( ζ, η ) + r ( ζ ) x ( η ) + x ( ζ ) r ( η ) � �� � = 0 on B

  42. Example � � d 2 r ( ξ ) = ξ 2 + 3 ξ + 2 dt 2 + 3 d B = ker dt + 2 B < 0, e.g. Ψ( ζ, η ) = − ζη ; Choose Ψ( ζ, η ) s.t. Q Ψ d Find Φ( ζ, η ) s.t. dt Q Φ ( w ) = Q Ψ ( w ) for all w ∈ B : ( ζ + η )Φ( ζ, η ) = Ψ( ζ, η ) + r ( ζ ) x ( η ) + x ( ζ ) r ( η ) � �� � = 0 on B d dt Q Φ ( w ) = Q Ψ ( w ) for all w ∈ B

  43. Example � � d 2 r ( ξ ) = ξ 2 + 3 ξ + 2 dt 2 + 3 d B = ker dt + 2 B < 0, e.g. Ψ( ζ, η ) = − ζη ; Choose Ψ( ζ, η ) s.t. Q Ψ d Find Φ( ζ, η ) s.t. dt Q Φ ( w ) = Q Ψ ( w ) for all w ∈ B : ( ζ + η )Φ( ζ, η ) = Ψ( ζ, η ) + r ( ζ ) x ( η ) + x ( ζ ) r ( η ) � �� � = 0 on B Equivalent to solving polynomial Lyapunov equation 0 = Ψ( − ξ, ξ ) + r ( − ξ ) x ( ξ ) + x ( − ξ ) r ( ξ ) ξ 2 ξ 2 − 3 ξ + 2 ξ 2 + 3 ξ + 2 ❀ x ( ξ ) = 1 6 ξ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend