the atlas level 1 central trigger processor core module
play

The ATLAS Level-1 Central Trigger Processor Core Module (CTP_CORE) - PowerPoint PPT Presentation

The ATLAS Level-1 Central Trigger Processor Core Module (CTP_CORE) Introduction Central Trigger Processor (CTP) Core Module (CTP_CORE) Testbeam Results On behalf of P. Borrego Amaral 1 , N. Ellis 1 , P. Farthouat 1 , P. Gallno


  1. The ATLAS Level-1 Central Trigger Processor Core Module (CTP_CORE) • Introduction • Central Trigger Processor (CTP) • Core Module (CTP_CORE) • Testbeam Results On behalf of P. Borrego Amaral 1 , N. Ellis 1 , P. Farthouat 1 , P. Gallno 1 , J. Haller 1 H. Pessoa Lima Jr. 2 , T. Maeno 1 , T. Pauly 1, I. Resurreccion Arcas 1 , J. M. de Seixas 2 , G. Schuler 1 , R. Spiwoks 1 , R. Torga Teixeira 1 , T. Wengler 1 1 CERN, 2 Universidade Federal de Rio de Janeiro R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 1 of 21

  2. The ATLAS Experiment General-purpose Experiment at CERN’s Large Hadron Collider (LHC): Proton-Proton collisions at 14 TeV centre-of-mass energy. About 25 collisions per bunch crossing ( BC ) every 25 ns (40 MHz) � ⇒ Interaction rate of 1 GHz. R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 2 of 21

  3. The Trigger/DAQ System Level-1 Trigger: Electronics + Firmware 2.5 µ s 75 kHz Level-2 Trigger + Event Filter: Computers 2 kHz 10 ms + Networks + Software 200 Hz 2 s Rate Available Time R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 3 of 21

  4. The Level-1 Trigger System calo muon (RPC) (TGC) Preprocessor Barrel End-cap Trigger Trigger Cluster Jet/Energy Processor Processor (e/ γ & τ /h) Muon-CTP-Interface (jet & energy) Central Trigger Processor RPC = Resistive Plate Chambers TTC Partition TTC Partition LTP LTP TGC = Thin-gap Chambers BUSY BUSY LTP = Local Trigger Processor TTC TTC TTC = Timing, Trigger and Control BUSY = Tree of ROD_BUSY Modules detector front-end ATLAS has ~ 40 TTC Partitions See Poster N33-103 on the ATLAS Level-1 Central Trigger System. See Poster N33-104 on the ATLAS Local Trigger Processor. R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 4 of 21

  5. The Central Trigger Processor (1) • Trigger Input: - Multiplicities from Calorimeter and Muon Triggers: electrons/photons, taus/hadrons, jets, and muons; - Energy flags from Calorimeter Trigger: Σ E T , E T miss , Σ E T jet - Calibration requests from sub-detectors. - Other specialized triggers : scintillators, beam pick-ups, etc. ⇒ Up to a total number of 160 trigger inputs at any one time. Plus internal triggers from CTP core module: random triggers, prescaled clock, bunch crossing groups. R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 5 of 21

  6. The Central Trigger Processor (2) • Level-1 Accept (L1A) - Derived from trigger inputs according to trigger menu: - Up to 256 trigger items are made from combinations of conditions on the trigger inputs, e.g. 1EM10 ≡ at least one electron/photon with E T ≥ 10 GeV 1MU6 ≡ at least one muon with p T ≥ 10 GeV/c ≡ missing energy of at least 20 GeV XE20 - Each trigger item has a mask, a priority 1 and a prescaling factor. 1 for dead-time (see later, CTP Core Module) - L1A is the OR of all trigger items. - An example of a trigger menu might contain 1MU6 mask = ON, priority = LOW, prescaling = 1000 2MU6 mask = ON, priority = HIGH, prescaling = 1 1EM20 AND XE20 mask = ON, priority = LOW, prescaling = 1 ... R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 6 of 21

  7. The Central Trigger Processor (3) • Additional Functionality: - Trigger type word (8 bits) accompanying every L1A. - Dead-time in order to prevent front-end buffers becoming full (see later, CTP Core Module). - Region-of-Interest (RoI) for the Level-2 Trigger and event data for the Read-out System (ROS) and for monitoring . - T iming signals , e.g Event Counter Reset (ECR), ... • Constraints: - Trigger latency target, i.e. from trigger input to L1A: 100 ns ≡ 4 BC. - Trigger menu changes with physics/beam/detector conditions. R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 7 of 21

  8. CTP - The Design CAL bus (calibration requests) PIT bus (pattern-in-time) COM bus (common) VMEbus M I I I M C O O O O C I N N N O O U U U U A N R T T T T L E 4 × SDP[30..0] 4 × SDP[30..0] 4 × SDP[30..0] L2_Link/RO_Link CAL[30..0] TST/beam pick-up 5 × LTP Link 5 × LTP Link 5 × LTP Link 5 × LTP Link BC/ORBIT 9U VME64x + custom backplanes CTP_MI (Machine Interface) Timing CTP_IN (Input Module) Trigger input CTP_MON (Monitoring Module) Bunch-to-bunch monitoring CTP_CORE (Core Module) Trigger menu + Readout CTP_OUT (Output Module) Trigger fan-out CTP_CAL (Calibration Module) Sub-detector calibration requests R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 8 of 21

  9. CTP - The Trigger Path PIT bus (pattern-in-time) COM bus (common) M I I I M C O O O O C I N N N O O U U U U A N R T T T T L E trigger input L1A CTP_IN modules receive, synchronize and align the trigger inputs, and route them to the PIT bus (Pattern-in-time). CTP_CORE module receives and synchronizes the PITs, compares with trigger menu and generates Level-1 Accept (L1A), sends L1A to the COM bus. CTP_OUT receives L1A from the COM bus and fans it out to sub-detector LTPs. R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 9 of 21

  10. CTP - The Timing Path COM bus (common) M I I I M C O O O O C I N N N O O U U U U A L N R T T T T E BCK, ORBIT busy from from LHC sub-detectors CTP_MI module receives timing signals from LHC, generates additional timing signals and sends all to the COM bus. CTP_OUT modules receive busy signals from sub-detector LTPs and send them to the COM bus. All CTP modules receive timing signals from the COM bus. R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 10 of 21

  11. CTP - The Readout & Monitoring VME bus M I I I M C O O O O C N A I N N O O U U U U N R T T T T L E Region-of-Interest event data to information to Level-2 Readout System CTP_CORE module sends Region-of-Interest (RoI) information to the Level-2 Trigger and event data to the Readout System. CTP_MON produces a bunch-by-bunch histogram of signals from the PIT bus. All CTP modules provide monitoring data to the VMEbus. R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 11 of 21

  12. CTP - The Calibration Requests CAL bus (calibration requests) I C M I I M C O O O O I N N N O O U U U U A N R T T T T L E calibration requests additional trigger inputs from Sub-detectors CTP_OUT modules receive calibration requests from sub-detector LTPs and send them to the CAL bus. CTP_CAL time-multiplexes calibration requests, receives additional trigger inputs and sends all to a CTP_IN module. R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 12 of 21

  13. The CTP Core Module (1) • Trigger Combinations: Combinations of signals from the PIT bus + internal to CTP_CORE using Look-up Tables ( LUT ) for trigger conditions, and Content-addressable Memories ( CAM ) for combinations of trigger conditions. Each CAM contains a 256-bit word and is ternary, i.e. allows bitwise matching of “0”, “1” or “don’t care”. 256 Trigger Conditions LUT CAM CAM CAM LUT 160 PIT + 12 internal LUT 256 Trigger Items Implemented using Xilinx Virtex II Pro (XC2VP50). R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 13 of 21

  14. The CTP Core Module (2) • Prescaling and Masking: - Prescale: programmable 24-bit down-counter ⇒ 256 TAP ( Trigger items after Prescaling ). - Mask: programmable mask + dead-time + busy ⇒ 256 TAV ( Trigger items after Veto ). - OR: over all 256 TAVs ⇒ 1 L1A (Level-1 Accept). - Generate 8-bit trigger type using eight 256-bit masks. busy dead-time 256 TAP 256 TAV OR L1A 256 Trigger Items trigger type mask trigger type mask trigger type mask Trigger Type Implemented using Altera Stratix (EP1S60). R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 14 of 21

  15. The CTP Core Module (3) • Dead-time: Simple deadtime: - Constant time after each L1A: No L1As for n BCs after each L1A. Current baseline (programmable): n = 4. Complex deadtime: - Leaky-bucket algorithm: Not more than n L1As in m BCs. Current baseline (programmable): 8 L1As in 80 µ s. ⇒ Two leaky-bucket algorithms are used, associated to the priority of each trigger item (high/low). Implemented using same FPGA as for Prescaling and Masking. R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 15 of 21

  16. The CTP Core Module (4) • Readout & Monitoring: Copied into FIFOs at every L1A: - 160 Signals from the PIT bus + 12 internal triggers; - 256 Trigger items before prescaling ( TBP ); - 256 Trigger items after prescaling ( TAP ); - 256 Trigger items after veto ( TAV ); - 64-bit UTC time-stamp (linked to GPS) with 5-ns jitter. Implemented in two Altera Stratix (EP1S60) with 128 signals for data exchange between them (firmware to be written): 160 PIT 256 TBV 256 TAP 256 TAV L1A 128 UTC FPGA2 FPGA1 S-Link S-Link VMEbus Level-2 Trigger Readout System R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 16 of 21

  17. The ATLAS Combined Testbeam beam Test beam programme during 2004 for prototypes and final modules of all ATLAS sub-detectors and trigger and data acquisition. R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 17 of 21

  18. The Level-1 Trigger at the Combined Testbeam Calorimeter Trigger Common Merger Modules Central Trigger Processor (CTP) Muon Trigger Barrel: RPC M I M C Sector Logic O N O O U I Muon-CTP-Interface N R T LTP E (MUCTPI) Muon Trigger End-cap: TGC Sector Logic Scintillators Trigger Input: 4 × 3 bit e/ γ + 4 × 3 bit jet multiplicities +1 bit total E T, Calorimeter Trigger: 6 × 3 bit muon multiplicities, Muon Trigger: 3 × 1 bit scintillators. Scintillators: CTP: 1 CTP_MI, 1 CTP_IN (out of up to 3), 1 CTP_CORE, 1 CTP_OUT (out of up to 4), 1 CTP_MON. R.Spiwoks IEEE NSS2004, Rome, 19/10/2004 18 of 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend