the 4th dimension the 4th dimension of the proton of the
play

The 4th Dimension The 4th Dimension of the Proton of the Proton - PowerPoint PPT Presentation

The 4th Dimension The 4th Dimension of the Proton of the Proton Andrea Bianconi Universit Di Brescia, INFN Pavia, Italy Egle Tomasi-Gustafsson CEA,IRFU,SPhN, Universit Paris-Saclay (France) PANDA LIX COLLABORATION MEETING, GSI, 5-9 XII


  1. The 4th Dimension The 4th Dimension of the Proton of the Proton Andrea Bianconi Università Di Brescia, INFN Pavia, Italy Egle Tomasi-Gustafsson CEA,IRFU,SPhN, Université Paris-Saclay (France) PANDA LIX COLLABORATION MEETING, GSI, 5-9 XII 2016 Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 1

  2. The Time-like Region 1 p F GE=GM 1 1 − − 10 Expected QCD scaling (q 2 ) 2 10 2 − 10 4 6 8 10 3 − 10 10 20 30 40 2 2 q [GeV ] Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 2

  3. Proton TL EM Form Factors p F (a) 0.3 Periodic structures recently discovered 0.2 in TL region 0.1 - Hadron creation from vacuum 0.04 (b) (Resonances?) 0.02 D 0 -0.02 -0.04 0 1 2 3 p [GeV] A. Bianconi, E. T-G. Phys. Rev. Lett. 114,232301 (2015), PRC 93, 035201 (2016) Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 3

  4. Oscillations : regular pattern in P Lab The relevant variable is p Lab associated to the relative motion of the final hadrons. p F (a) 0.3 0.2 0.1 0.04 (b) 0.02 A: Small perturbation B: damping D 0 C: r < 1fm D=0: maximum at p=0 -0.02 Simple oscillatory behaviour -0.04 Small number of coherent sources 0 1 2 3 p [GeV] A. Bianconi, E. T-G. Phys. Rev. Lett. 114,232301 (2015), PRC 93, 035201 (2016) Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 4

  5. Fourier Transform 3 3 M (r) (1/fm ) M(r) (1/fm ) 0 0.15 2 10 10 0.1 F 0 = = 1 0.05 -1 10 -2 10 0 -3 10 -0.05 -4 10 0.6 0.8 1 1.2 1.4 1.6 0 0.5 1 1.5 2 r (fm) r (fm) Rescattering processes • Large imaginary part • Related to the time evolution of the charge density? • (E.A. Kuraev, E. T.-G., A. Dbeyssi, PLB712 (2012) 240) Consequences for the SL region? • Data from BESIII confirm the structure • Expected from PANDA • Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 5

  6. Definition of TL-SL Form Factors In SL- Breit frame (zero energy transfer): In TL-(CMS): : distribution in time of the qqbar pair formation E.A. Kuraev, A. Dbeyssi, E. T-G., PLB 712, 240 (2012) Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 6

  7. Definition of TL-SL Form Factors e e’ space-time distribution of the electric charge in the space-time volume SL p’ p SL photon ‘sees’ a charge density time _ _ TL - e+ TL photon can NOT test a space TL+ + p p e distribution. How to connect and understand e p p e the amplitudes? time time Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 7

  8. Definition of TL-SL Form Factors represent projections of the same distribution in orthogonal subspaces Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 8

  9. Charge: photon-charge coupling Fourier transform of a stationary charge and current distribution Amplitude for creating charge-anticharge pairs at time t. Charge distribution => distribution in time of p p p p X 2 The simplest picture: qq pair + g compact di-quark X q q X 1 γ * γ * Resolved Unresolved representation Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 9

  10. Amplitudes p P A q γ * FF P _ B p forbidden leads to imaginary part of F(q) even if F(x) is real affects only phases (T-conservation) Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 10

  11. Implementing causality X (TL) => q(TL) Fock state of N constituents p p p p X 2 g X q q weights related to the masses X 1 γ * γ * Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 11

  12. Examples time X 2 x time 2 X 0 space Causality implies t 1 <t 2 X 1 x 1 Unresolved pair created space at t 1 =0, implies t<0 p p p p Assuming independent probability of creating a (anti)proton (in LC): X 2 g X q q X 1 γ * γ * Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 12

  13. Examples - Homogeneous distribution for positive times: - Exponential damping ( a is finite): Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 13

  14. Examples: Monopole-like shape F(x) is non zero in past and future LC. Annihilation and creation processes are time symmetric. Differ by a phase. Summing two terms with the same phase: 1/a has the meaning of a formation time. For large t, R(t) is very small. Either the second pair is formed within 1/a or the system evolves differently. => zero mass resonance of width a Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 14

  15. Examples: Lorentzian resonance Replacing q->q-M : one obtains poles By Fourier transform: Response of a classical damped oscillator to an instantenous external force Negative energy states are allowed by particle- antiparticle symmetry. To each pole q 0 =M+ia corresponds a pole q 0 =-(M +ia) Positive poles => creation process Negative poles=> annihilation process Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 15

  16. Examples: Breit-Wigner A Breit-Wigner probability contains all four poles: R(t) cos(5*x)*exp(-abs(2*x)) 1 M=1 GeV, Γ =0.1-1 GeV 0.8 The combination: 0.6 retarded (t < 0) advanced (t > 0) 0.4 proton-antiproton proton-antiproton creation annihilation 0.2 corresponds to 0 -0.2 -3 -2 -1 0 1 2 3 t (fm/c) Retarded response of a classical bound and damped oscillator to a external perturbation Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 16

  17. Several spectators: dipole and asymptotics (t) δ R (t- ) τ 2 Use FT properties of convolutions F F Chain of two oscillators, 1 2 one directly connected to the photon The second is a decaying correlation R ( ) τ 1 R * R ( t ) between active quark and spectator 1 2 R(t) 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -3 -2 -1 0 1 2 3 t (fm/c) Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 17

  18. More complicated examples Three quark-antiquarks pair in the intermediate state. Sum of two contributions of equal shape: periodic modulation Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 18

  19. Conclusion • New understanding of Form Factors in the Time-like region: time distribution of quark-antiquark pair creation vertices • The distributions tested by the virtual photon are projections in orthogonal 1 and 3-dim spaces of the function F(x): and R(t) 1 0.8 • Simple functions R(t) 0.6 0.4 0.2 0 • Origin of oscillatory phenomena -0.2 -0.4 -3 -2 -1 0 1 2 3 t (fm/c) Andrea BIANCONI, Egle TOMASI-GUSTAFSSON GSI, 6-XII-2016 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend