tensor topology
play

Tensor topology Chris Heunen Pau Enrique Moliner Sean Tull 1 / 15 - PowerPoint PPT Presentation

Tensor topology Chris Heunen Pau Enrique Moliner Sean Tull 1 / 15 Where things happen Wouldnt it be great if control flow data flow provenance proof analysis causality were all instances of a one theory? 2 / 15


  1. Tensor topology Chris Heunen Pau Enrique Moliner Sean Tull 1 / 15

  2. “Where things happen” Wouldn’t it be great if ◮ control flow ◮ data flow ◮ provenance ◮ proof analysis ◮ causality were all instances of a one theory? 2 / 15

  3. Idempotent subunits Categorify idempotents in ring � � ISub( C ) = s : S ֌ I | id S ⊗ s : S ⊗ S → S ⊗ I iso 3 / 15

  4. Example: order theory Frame: complete lattice, ∧ distributes over � e.g. open subsets of topological space 4 / 15

  5. Example: order theory Frame: complete lattice, ∧ distributes over � e.g. open subsets of topological space Quantale: complete lattice, · distributes over � e.g. [0 , ∞ ], Pow( M ) 4 / 15

  6. Example: order theory Frame: complete lattice, ∧ distributes over � e.g. open subsets of topological space Quantale: complete lattice, · distributes over � e.g. [0 , ∞ ], Pow( M ) ⊥ Quantale Frame ISub { x ∈ Q | x 2 = x ≤ 1 } Q ‘idempotent subunits are side-effect-free observations’ 4 / 15

  7. Example: logic ISub(Sh( X )) = { S ֌ 1 } = { S ⊆ X | S open } ∈ Frame ‘idempotent subunits are truth values’ 5 / 15

  8. Example: algebra ISub( Mod R ) = � � � � S = S 2 = { x 1 y 1 + · · · x n y n | x i , y i ∈ S } S ⊆ R ideal ‘idempotent subunits are idempotent ideals’ 6 / 15

  9. Example: analysis Hilbert module is C 0 ( X )-module with C 0 ( X )-valued inner product C 0 ( X ) = { f : X → C | ∀ ε > 0 ∃ K ⊆ X : | f ( X \ K ) | < ε } ISub( Hilb C 0 ( X ) ) = { S ⊆ X open } ‘idempotent subunits are open subsets of base space’ 7 / 15

  10. Example: geometry Hilbert bundle is bundle E ։ X with Hilbert spaces for fibres ISub( Hilb X ) = { S ⊆ X open } ‘idempotent subunits are open subsets of base space’ 8 / 15

  11. Semilattice Proposition: ISub( C ) is a semilattice, ∧ = ⊗ , 1 = id I T I S Caveat: C must be firm, i.e. s ⊗ id T monic, and size issue 9 / 15

  12. Semilattice Proposition: ISub( C ) is a semilattice, ∧ = ⊗ , 1 = id I T I S Caveat: C must be firm, i.e. s ⊗ id T monic, and size issue id ⊥ SemiLat FirmCat ISub 9 / 15

  13. Spatial categories Call C spatial when ISub( C ) is frame SemiLat ⊥ Frame ⊣ ⊣ ISub ISub ? ⊥ SpatCat FirmCat 10 / 15

  14. Spatial categories Call C spatial when ISub( C ) is frame SemiLat ⊥ Frame ⊣ ⊣ ISub ISub ? ⊥ SpatCat FirmCat Idea: � C = [ C op , Set ] is cocomplete 10 / 15

  15. Spatial categories Call C spatial when ISub( C ) is frame SemiLat ⊥ Frame ⊣ ⊣ ISub ISub ? ⊥ SpatCat FirmCat Idea: � C = [ C op , Set ] is cocomplete � B,C C ( A, B ⊗ C ) × F ( B ) × G ( C ) F � ⊗ G ( A ) = Lemma : ISub( � C , � ⊗ ) is frame 10 / 15

  16. Spatial categories Call C spatial when ISub( C ) is frame SemiLat ⊥ Frame ⊣ ⊣ ISub ISub ? ⊥ SpatCat FirmCat Idea: � C = [ C op , Set ] is cocomplete � B,C C ( A, B ⊗ C ) × F ( B ) × G ( C ) F � ⊗ G ( A ) = � Lemma : ISub( � ⊗ ) is frame, but ISub( � C , � C ) � = ISub( C ) 10 / 15

  17. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I id ⊗ s 11 / 15

  18. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I id ⊗ s { s | s supports f } f supp C 2 Pow(ISub( C )) 11 / 15

  19. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I id ⊗ s Monoidal functor: supp( f ) ∧ supp( g ) ≤ supp( f ⊗ g ) { s | s supports f } f supp C 2 Pow(ISub( C )) 11 / 15

  20. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I id ⊗ s Monoidal functor: supp( f ) ∧ supp( g ) ≤ supp( f ⊗ g ) { s | s supports f } f supp C 2 Pow(ISub( C )) � F F Q ∈ Frame universal with F ( f ) = � { F ( s ) | s ∈ ISub( C ) supports f } 11 / 15

  21. Spatial categories Call F : C op → Set supported when F ( A ) ≃ { f : A → B | supp( f ) ∩ U � = ∅} for some B ∈ C and U ⊆ ISub( C ). ⊥ SemiLat Frame ⊣ ISub ⊣ ISub ⊥ SpatCat FirmCat [ C op , Set ] supp C � = Sh( C , J )! 12 / 15

  22. Complements s Subunit is split when id S I SISub( C ) is a sub-semilattice of ISub( C ) (don’t need firmness) 13 / 15

  23. Complements s Subunit is split when id S I SISub( C ) is a sub-semilattice of ISub( C ) (don’t need firmness) If C has zero object, ISub( C ) has least element 0 s, s ⊥ are complements if s ∧ s ⊥ = 0 and s ∨ s ⊥ = 1 13 / 15

  24. Complements s Subunit is split when id S I SISub( C ) is a sub-semilattice of ISub( C ) (don’t need firmness) If C has zero object, ISub( C ) has least element 0 s, s ⊥ are complements if s ∧ s ⊥ = 0 and s ∨ s ⊥ = 1 Proposition : when C has finite biproducts, then s, s ⊥ ∈ SISub( C ) are complements if and only if they are biproduct injections Corollary : if ⊕ distributes over ⊗ , then SISub( C ) is a Boolean algebra (universal property?) 13 / 15

  25. Linear logic if T : C → C monoidal monad, Kl( T ) is monoidal semilattice morphism { η I ◦ s | s ∈ ISub( C ) , T ( s ) is monic in C } → ISub(Kl( T )) is not injective, nor surjective 14 / 15

  26. Linear logic if T : C → C monoidal monad, Kl( T ) is monoidal semilattice morphism { η I ◦ s | s ∈ ISub( C ) , T ( s ) is monic in C } → ISub(Kl( T )) is not injective, nor surjective model for linear logic: ∗ -autonomous category C with finite products, monoidal comonad !: ( C , ⊗ ) → ( C , × ) (then Kl(!) cartesian closed) if ε epi, then ISub( C , × ) ≃ ISub(Kl(!) , × ) (but hard to compare to ISub( C , ⊗ )) 14 / 15

  27. Further Do you work with maps into a tensor unit? ◮ causality ◮ proof analysis ◮ control flow ◮ data flow ◮ concurrency ◮ graphical calculus 15 / 15

  28. Restriction � � The full subcategory C s of A with id A ⊗ s invertible is: ◮ monoidal with tensor unit S � � ◮ coreflective: C ⊥ C s � � � � ◮ tensor ideal: if A ∈ C and B ∈ C s , then A ⊗ B ∈ C s � � ◮ monocoreflective: counit ε I monic (and id A ⊗ ε I iso for A ∈ C s )

  29. Restriction � � The full subcategory C s of A with id A ⊗ s invertible is: ◮ monoidal with tensor unit S � � ◮ coreflective: C ⊥ C s � � � � ◮ tensor ideal: if A ∈ C and B ∈ C s , then A ⊗ B ∈ C s � � ◮ monocoreflective: counit ε I monic (and id A ⊗ ε I iso for A ∈ C s ) Proposition : ISub( C ) ≃ { monocoreflective tensor ideals in C }

  30. Localisation A graded monad is a monoidal functor E → [ C , C ] ( η : A → T (1), µ : T ( t ) ◦ T ( s ) → T ( s ⊗ t )) � � Lemma : s �→ C s is an ISub( C )-graded monad

  31. Localisation A graded monad is a monoidal functor E → [ C , C ] ( η : A → T (1), µ : T ( t ) ◦ T ( s ) → T ( s ⊗ t )) � � Lemma : s �→ C s is an ISub( C )-graded monad universal property of localisation for Σ = { id E ⊗ s | E ∈ C } ( − ) ⊗ S � � s = C [Σ − 1 ] C C ≃ F inverting Σ D

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend