tensor topology
play

Tensor topology Pau Enrique Moliner Chris Heunen Sean Tull 1 / 16 - PowerPoint PPT Presentation

Tensor topology Pau Enrique Moliner Chris Heunen Sean Tull 1 / 16 Where things happen Any monoidal category comes with built-in space Matches examples Universal notion of support Completion to actual space


  1. Tensor topology Pau Enrique Moliner Chris Heunen Sean Tull 1 / 16

  2. “Where things happen” ◮ Any monoidal category comes with built-in ‘space’ ◮ Matches examples ◮ Universal notion of support ◮ Completion to actual space ◮ Embedding separates out spatial dimension ◮ Coproducts correspond to complements See also [Balmer, “Tensor triangular geometry”] [Boyarchenko&Drinfeld, “Character sheaves of unipotent groups”] 2 / 16

  3. Monoidal categories ◮ Objects ( A, B, C, . . . ) and morphisms ( f : A → B, . . . ) ◮ Two ways to compose: sequential ( ◦ ) and parallel ( ⊗ ) ◮ Two ways to do nothing: id A : A → A and I f ◦ id = id = id ◦ f I ⊗ A ≃ A ≃ A ⊗ I B B A D g f A C h k A A Morphisms I → I form commutative monoid of scalars Many examples: ◮ Hilbert spaces ◮ Sets ◮ Lattices 3 / 16

  4. Idempotent subunits Categorify central idempotents in ring: � � ISub( C ) = s : S ֌ I | S ⊗ s : S ⊗ S → S ⊗ I iso 4 / 16

  5. Example: order theory Frame: complete lattice, ∧ distributes over � e.g. open subsets of topological space 5 / 16

  6. Example: order theory Frame: complete lattice, ∧ distributes over � e.g. open subsets of topological space Quantale: complete lattice, · distributes over � e.g. [0 , ∞ ], Pow( M ) 5 / 16

  7. Example: order theory Frame: complete lattice, ∧ distributes over � e.g. open subsets of topological space Quantale: complete lattice, · distributes over � e.g. [0 , ∞ ], Pow( M ) ⊥ Quantale Frame ISub { x ∈ Q | x 2 = x ≤ 1 } Q 5 / 16

  8. Example: logic ISub(Sh( X )) = { S ֌ 1 } = { S ⊆ X | S open } ∈ Frame 6 / 16

  9. Example: algebra ISub( Mod R ) = � � � � S = S 2 = { x 1 y 1 + · · · + x n y n | x i , y i ∈ S } S ⊆ R ideal for nonunital bialgebra R in monoidal category 7 / 16

  10. Example: analysis Hilbert module is C 0 ( X )-module with C 0 ( X )-valued inner product C 0 ( X ) = { f : X → C | ∀ ε > 0 ∃ K ⊆ X : | f ( X \ K ) | < ε } ISub( Hilb C 0 ( X ) ) = { S ⊆ X open } 8 / 16

  11. Semilattice Proposition: ISub( C ) is a semilattice, ∧ = ⊗ , 1 = I T t I s S Caveat: C must be firm, i.e. s ⊗ T monic, and size issue 9 / 16

  12. Semilattice Proposition: ISub( C ) is a semilattice, ∧ = ⊗ , 1 = I T t I s S Caveat: C must be firm, i.e. s ⊗ T monic, and size issue id ⊥ SemiLat FirmCat ISub 9 / 16

  13. Spatial categories Call C spatial when ISub( C ) is frame ⊥ SemiLat Frame ⊣ ISub ⊣ ISub ? SpatCat FirmCat ⊥ 10 / 16

  14. Spatial categories Call C spatial when ISub( C ) is frame ⊥ SemiLat Frame ⊣ ISub ⊣ ISub ? SpatCat FirmCat ⊥ Idea: � C = [ C op , Set ] is cocomplete 10 / 16

  15. Spatial categories Call C spatial when ISub( C ) is frame ⊥ SemiLat Frame ⊣ ISub ⊣ ISub ? SpatCat FirmCat ⊥ Idea: � C = [ C op , Set ] is cocomplete � B,C C ( A, B ⊗ C ) × F ( B ) × G ( C ) F � ⊗ G ( A ) = Lemma : ISub( � C , � ⊗ ) is frame 10 / 16

  16. Spatial categories Call C spatial when ISub( C ) is frame ⊥ SemiLat Frame ⊣ ISub ⊣ ISub ? SpatCat FirmCat ⊥ Idea: � C = [ C op , Set ] is cocomplete � B,C C ( A, B ⊗ C ) × F ( B ) × G ( C ) F � ⊗ G ( A ) = Lemma : ISub( � ⊗ ) is frame, but ISub( � � C , � C ) � = ISub( C ) 10 / 16

  17. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I B ⊗ s 11 / 16

  18. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I B ⊗ s f { s | s supports f } supp Pow(ISub( C )) C 2 11 / 16

  19. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I B ⊗ s Monoidal functor: supp( f ) ∧ supp( g ) ≤ supp( f ⊗ g ) f { s | s supports f } supp Pow(ISub( C )) C 2 11 / 16

  20. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I B ⊗ s Monoidal functor: supp( f ) ∧ supp( g ) ≤ supp( f ⊗ g ) f { s | s supports f } supp Pow(ISub( C )) C 2 � F F Q ∈ Frame universal with F ( f ) = � { F ( s ) | s ∈ ISub( C ) supports f } 11 / 16

  21. Spatial completion Call F : C op → Set broad when � � F ( A ) ≃ ( f, s ): A → B | s ∈ supp( f ) ∩ U for some B ∈ C and U ⊆ ISub( C ). ⊥ SemiLat Frame ⊣ ISub ⊣ ISub SpatCat FirmCat ⊥ ˆ C C brd � = Sh( C , J )! 12 / 16

  22. Simple categories Say C is simple when ISub( C ) = { id I } 13 / 16

  23. Simple categories Say C is simple when ISub( C ) = { id I } universal property of localisation for Σ s = { A ⊗ s | A ∈ C } � ( − ) ⊗ S � s = C [Σ − 1 C s ] C ≃ F inverting Σ s D 13 / 16

  24. Simple categories Say C is simple when ISub( C ) = { id I } universal property of localisation for Σ s = { A ⊗ s | A ∈ C } � ( − ) ⊗ S � s = C [Σ − 1 C s ] C ≃ F inverting Σ s D Lemma : Σ = { A ⊗ s | A ∈ C , s ∈ ISub( C } calculus of right fractions gives functor C → Loc( C ) = C [Σ − 1 ] into simple category 13 / 16

  25. Slim categories Say C is slim when any object is (domain of) idempotent subunit (Note: S determines s ) Definition : support structure is functor ζ : C → C with morphisms ◮ β A : ζ ( A ) ֌ I ; ◮ γ A : A → ζ ( A ) ⊗ A ; ◮ δ A : ζ ( ζ ( A )) → ζ ( A ); satisfying five coherence conditions Example : supported quantales Proposition : δ A is iso, β A is idempotent, ζ : C → ISub( C ) 14 / 16

  26. Slim categories Say C is slim when any object is (domain of) idempotent subunit (Note: S determines s ) Definition : support structure is functor ζ : C → C with morphisms ◮ β A : ζ ( A ) ֌ I ; ◮ γ A : A → ζ ( A ) ⊗ A ; ◮ δ A : ζ ( ζ ( A )) → ζ ( A ); satisfying five coherence conditions Example : supported quantales Proposition : δ A is iso, β A is idempotent, ζ : C → ISub( C ) Theorem : Any supported monoidal category embeds into product of simple and slim one: C ֌ Loc( C ) × ISub( C ) 14 / 16

  27. Complements s Subunit is split when id S I SISub( C ) is a sub-semilattice of ISub( C ) (don’t need firmness) 15 / 16

  28. Complements s Subunit is split when id S I SISub( C ) is a sub-semilattice of ISub( C ) (don’t need firmness) If C has zero object, ISub( C ) has least element 0 s, s ⊥ are complements if s ∧ s ⊥ = 0 and s ∨ s ⊥ = 1 15 / 16

  29. Complements s Subunit is split when id S I SISub( C ) is a sub-semilattice of ISub( C ) (don’t need firmness) If C has zero object, ISub( C ) has least element 0 s, s ⊥ are complements if s ∧ s ⊥ = 0 and s ∨ s ⊥ = 1 Proposition : when C has finite biproducts, then s, s ⊥ ∈ SISub( C ) are complements if and only if they are biproduct injections Corollary : if ⊕ distributes over ⊗ , then SISub( C ) is a Boolean algebra (universal property?) 15 / 16

  30. Conclusion ◮ Any monoidal category comes with built-in ‘space’ ◮ Matches examples ◮ Universal notion of support ◮ Completion to actual space ◮ Embedding separates out spatial dimension ◮ Coproducts correspond to complements Further goals: ◮ Canonical status for support structure ◮ Dauns-Hofmann-like theorem ◮ Graphical calculus ◮ Applications: causality, concurrency 16 / 16

  31. Restriction � � The full subcategory C s of A with A ⊗ s invertible is: ◮ monoidal with tensor unit S � � ◮ coreflective: C ⊥ C s � � � � ◮ tensor ideal: if A ∈ C and B ∈ C s , then A ⊗ B ∈ C s � � ◮ monocoreflective: counit ε I monic (and A ⊗ ε I iso for A ∈ C s )

  32. Restriction � � The full subcategory C s of A with A ⊗ s invertible is: ◮ monoidal with tensor unit S � � ◮ coreflective: C ⊥ C s � � � � ◮ tensor ideal: if A ∈ C and B ∈ C s , then A ⊗ B ∈ C s � � ◮ monocoreflective: counit ε I monic (and A ⊗ ε I iso for A ∈ C s ) Proposition : ISub( C ) ≃ { monocoreflective tensor ideals in C }

  33. Restriction � � The full subcategory C s of A with A ⊗ s invertible is: ◮ monoidal with tensor unit S � � ◮ coreflective: C ⊥ C s � � � � ◮ tensor ideal: if A ∈ C and B ∈ C s , then A ⊗ B ∈ C s � � ◮ monocoreflective: counit ε I monic (and A ⊗ ε I iso for A ∈ C s ) Proposition : ISub( C ) ≃ { monocoreflective tensor ideals in C } � � � � Examples: ( Mod R ) I = Mod I , Sh( X ) U = Sh( U )

  34. Localisation A graded monad is a monoidal functor E → [ C , C ] ( η : A → T (1), µ : T ( t ) ◦ T ( s ) → T ( s ⊗ t )) � � Lemma : s �→ C s is an ISub( C )-graded monad

  35. Localisation A graded monad is a monoidal functor E → [ C , C ] ( η : A → T (1), µ : T ( t ) ◦ T ( s ) → T ( s ⊗ t )) � � Lemma : s �→ C s is an ISub( C )-graded monad universal property of localisation for Σ s = { A ⊗ s | A ∈ C } ( − ) ⊗ S � � s = C [Σ − 1 C s ] C ≃ F inverting Σ s D

  36. Localisation A graded monad is a monoidal functor E → [ C , C ] ( η : A → T (1), µ : T ( t ) ◦ T ( s ) → T ( s ⊗ t )) � � Lemma : s �→ C s is an ISub( C )-graded monad universal property of localisation for Σ s = { A ⊗ s | A ∈ C } ( − ) ⊗ S � � s = C [Σ − 1 C s ] C ≃ F inverting Σ s D Lemma : Σ = { A ⊗ s | A ∈ C , s ∈ ISub( C } calculus of right fractions gives functor C → Loc( C ) = C [Σ − 1 ] into simple category

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend