tensor numerical methods in scientific computing basic
play

Tensor numerical methods in scientific computing: Basic theory and - PowerPoint PPT Presentation

Tensor numerical methods in scientific computing: Basic theory and initial applications Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013 Max-Planck-Institute for Mathematics in the Sciences, Leipzig Boris Khoromskij


  1. Tensor numerical methods in scientific computing: Basic theory and initial applications Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013 Max-Planck-Institute for Mathematics in the Sciences, Leipzig Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013 Tensor methods for high-dim. PDEs () 1 / 44

  2. Outline of the talk 1 Introduction 2 Separation of variables: from canonical to tensor network formats 3 Quantized tensor approximation of logarithmic complexity Multi-resolution folding to quantized images: R 2 L �→ � L ℓ = 1 R 2 Theory of quantized approximation to multidimensional functional vectors Representation (approximation) of operators in quantized spaces 4 Large-scale eigenvalue problems in quantum chemistry 5 Stochastic/parametric PDEs and multi-dimensional preconditioning 6 High-dimensional dynamics: Fokker-Planck, master and molecular Schrödinger eqn. 7 Superfast QTT-FFT, convolution and QTT-FWT 8 Conclusions Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013 Tensor methods for high-dim. PDEs () 2 / 44

  3. Main target: tractable methods for solving d -dimensional PDEs High-dimensional applications: d -dim. operators: Green’s functions, Fourier, convolution and wavelet transforms. Molecular systems: electronic structure, quantum molecular dynamics. PDEs in R d : quantum information, stochastic PDEs, dynamical systems. ◮ Elliptic (parameter-dependent) BVP: Find u ∈ H 1 0 (Ω) , s.t. Ω ∈ R d . H u := − div ( a grad u + u v ) + Vu = F in ◮ Elliptic EVP: Find a pair ( λ, u ) ∈ R × H 1 0 (Ω) , s.t. in Ω ∈ R d , H u = λ u � u , u � = 1 . ◮ Parabolic-type equations ( σ ∈ { 1 , i } ): Find u : R d × ( 0 , T ) → R , s.t. σ ∂ u u ( x , 0 ) ∈ H 2 ( R d ) : ∂ t + H u = 0 . Tensor methods adapt gainfully to main challenges: ◮ High spacial dimension: Ω = ( − b , b ) d ∈ R d ( d = 2 , 3 , ..., 100 , ... ). ◮ Multiparametric eq.: a ( y , x ) , F ( y , x ) , u ( y , x ) , y ∈ R M ( M = 1 , 2 , ..., 100 , ... ). Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013 Tensor methods for high-dim. PDEs () 3 / 44

  4. Tensor numerical methods in higher dimensions: focus, building blocks, benefits Main focus: O ( d ) - numerical approximation to d -dimensional PDEs Basic ingredients: ◮ Traditional numerical methods. ◮ Numerical multilinear algebra ◮ Low-parametric separable approximation of d -variate functions: theory/algorithms. ◮ Tensor representation of linear operators: Green’s functions, convolution ( d ) , FFT ( d ) , wavelet, multi-particle Hamiltonians, preconditioners. ◮ Iterative solvers to steady-state and temporal PDEs on “tensor manifolds“. “Separation“ of variables beats ”curse of dimensionality“: ◮ O ( dN ) tensor numerical methods, N d → O ( dN ) . Super-compression: ◮ O ( d log N ) Quantized tensor approximation (QC, QTT), N d → O ( d log N ) . Guiding principle: ◮ Validation of numerical algorithms on real-life high-dimensional PDEs. Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013 Tensor methods for high-dim. PDEs () 4 / 44

  5. Separable representation of (discrete) functions in a tensor-product Hilbert space Tensor-product Hilbert space, V n = V 1 ⊗ ... ⊗ V d , n = ( n 1 , ..., n d ) , n ℓ = dim V ℓ . ◮ Euclidean vector space V n = R n 1 × ... × n d , V ℓ = R n ℓ ( ℓ = 1 , ..., d ), � V = [ v i ] ∈ V n : � W , V � = i w i v i , i = ( i 1 , ..., i d ) : i ℓ ∈ I ℓ = { 1 , ..., n ℓ } . ◮ Tensors are functions of discrete variable, V n ∋ V : I 1 × ... × I d �→ R . Separable representation in V n : rank-1 tensors � d V = [ v i 1 ... i d ] = v ( 1 ) ⊗ . . . ⊗ v ( d ) ∈ V n , ℓ = 1 v ( ℓ ) v i 1 ... i d = : i ℓ ◮ The scalar product � d � W , V � = � w ( 1 ) ⊗ . . . ⊗ w ( d ) , v ( 1 ) ⊗ . . . ⊗ v ( d ) � = ℓ = 1 � w ( ℓ ) , v ( ℓ ) � V ℓ . ◮ Storage: Stor ( V ) = � d ℓ = 1 n ℓ ≪ dim V n = � d ℓ = 1 n ℓ . ◮ O ( d ) bilinear operations: addition, Hadamard product, contraction, convolution, ... Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013 Tensor methods for high-dim. PDEs () 5 / 44

  6. Parametrization by separation of variables: from canonical to tensor network formats Def. Canonical R -term representation in V n : V ∈ C R ( V n ) , if [Hitchcock ’27, ...] � R k = 1 v ( 1 ) ⊗ . . . ⊗ v ( d ) v ( ℓ ) V = , ∈ V ℓ . k k k ◮ d = 2: rank- R matrices, V = � R k = 1 u k v T k . Visualizing canonical model, d = 3. (3) (3) (3) V V V r 2 1 b b b r 1 2 (2) (2) (2) V V ... V = + + + r 1 2 A (1) (1) (1) V V V r 2 1 ◮ Advantages: Storage = dRN , simple multilinear algebra. ◮ Limitations: C R ( V n ) is the non-closed set ⇒ lack of stable approximation methods. Example. f ( x ) = x 1 + ... + x d . rank Can ( f ) = d , but approximated by rank-2 elements � d ℓ = 1 ( 1 + ε x ℓ ) − 1 f ( x ) = lim . ε ε → 0 Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013 Tensor methods for high-dim. PDEs () 6 / 44

  7. Orthogonal Tucker model Def. Rank r = [ r 1 , . . . , r d ] Tucker tensors: V ∈ T r ( V n ) if [Tucker ’66] r � b k 1 ... k d v ( 1 ) k 1 ⊗ . . . ⊗ v ( d ) T ℓ = span { v ( ℓ ) k ℓ } r ℓ k ℓ = 1 ⊂ R n ℓ . V = k d ∈ T 1 ⊗ ... ⊗ T d , k 1 ,..., k d = 1 ◮ d = 2: SVD of a rank- r matrix, A = UDV T , U ∈ R n × r , D ∈ R r × r , [Schmidt ’1905] ◮ Storage: drN + r d , r = max r ℓ ≪ N (efficient for d = 3, e.g. Hartree-Fock eq.). Beginning of tensor numerical methods: Tucker for 3D functions (e.g. f = e − r , 1 r ). [BNK, Khoromskaia ’07] Slater function, AR=10, n = 64 (3) 0 10 T r3 I3 1 I2 0.8 −5 10 r1 error 0.6 r2 B I 1 r3 V r2 0.4 (2) T E FN I 0.2 −10 3 10 0 E FE (1) I I1 2 0 T 5 E C 0 5 10 2 4 6 8 10 12 14 10 r1 Tucker rank Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013 Tensor methods for high-dim. PDEs () 7 / 44

  8. Matrix Product States (MPS) factorization: In quantum physics/information: The matrix product states ( MPS ) and tree-tensor network states ( TNS ) of slightly entangled systems, matrix product operators ( MPO ), DMRG optimization. [White ’92; ..., Östlund, Rommer ’95; ..., Cirac, Verstraete ’06, ...] . Re-invented in numerical multilinear algebra: Hierarchical dimension splitting, O ( dr log d N ) -storage: [BNK ’06] . Hierarchical Tucker (HT) ≡ TNS: [Hackbusch, Kühn ’09] Tensor train (TT) ≡ MPS (open b.c.) [Oseledets, Tyrtyshnikov ’09] . Def. Tensor Train (MPS): Given r = ( r 1 , ..., r d ) , r d = 1, r 0 = 1. V ∈ TT [ r ] ⊂ V n is a parametrization by contracted product of tri-tensors in R r ℓ − 1 × n ℓ × r ℓ , � α G ( 1 ) α 1 [ i 1 ] G ( 2 ) α 1 α 2 [ i 2 ] · · · G ( d ) V [ i 1 ... i d ] = α d − 1 [ i d ] G ( 1 ) [ i 1 ] G ( 2 ) [ i 2 ] ... G ( d ) [ i d ] , ≡ G ( ℓ ) [ i ℓ ] is a r ℓ − 1 × r ℓ matrix, 1 ≤ i ℓ ≤ n ℓ . Example. f ( x ) = x 1 + ... + x d , rank TT ( f ) = 2. � � 1 � � � � 1 � � 0 1 0 f = x 1 1 ... . x 2 1 x d − 1 1 x d Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013 Tensor methods for high-dim. PDEs () 8 / 44

  9. Benefits and limitations of the TT format Example. d = 5. r r r 2 3 4 r r r r 1 3 1 2 n n n 4 i 3 2 1 i n 3 5 i n i 2 4 1 r 4 . i 5 ◮ Advantages : Storage: dr 2 N ≪ N d , N = max n k . Efficient and robust MLA with polynomial scaling in r , linear scaling in d . Can be implemented by stable QR/SVD algorithms. ◮ Limitations : strong entanglements in a system, large mode-size N . Multilinear matrix-vector algebra and DMRG iterations cost: O ( dRr 3 N 2 ) d , R , r ∼ 10 2 , N ∼ 10 3 ÷ 10 4 – non-tractable local problems ? Rank bounds: 2 , r TT ≤ R Can , r Tuck ≤ r TT r Tuck ≤ R Can . Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013 Tensor methods for high-dim. PDEs () 9 / 44

  10. Tensor network formats without loops Tucker TNS (HT) G ( 1234 ) G γ 12 γ 34 γ 1 γ 2 γ 3 γ 4 G ( 12 ) G ( 34 ) U ( 1 ) U ( 2 ) U ( 3 ) U ( d ) γ 1 γ 2 γ 3 γ 4 i 1 i 2 i 3 i d U ( 1 ) U ( 2 ) U ( 3 ) U ( 4 ) i 1 i 2 i 3 i 4 MPS (TT) QTT-Tucker α 1 α 2 α d − 1 α d − 1 α 1 α 2 · · · · · · G ( 1 ) G ( 2 ) G ( d ) G ( 1 ) G ( 2 ) G ( d ) γ 1 γ 2 γ d i 1 , 1 U ( 2 , 1 ) i 2 , 1 U ( d , 1 ) i d , 1 i 1 i 2 i d U ( 1 , 1 ) γ 1 , 1 . γ 2 , 1 . γ d , 1 . . . . . . . Canonical = � Tucker γ k ∈{ 1 } γ 1 , L − 1 γ 2 , L − 1 γ d , L − 1 i 1 , L U ( 2 , L ) i 2 , L U ( d , L ) i d , L U ( 1 , L ) Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013 Tensor methods for high-dim. PDEs () 10 / 44

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend