numerical tensor methods and their applications
play

Numerical tensor methods and their applications I.V. Oseledets 8 - PowerPoint PPT Presentation

Numerical tensor methods and their applications I.V. Oseledets 8 May 2013 I.V. Oseledets Numerical tensor methods and their applications All lectures 4 lectures, 2 May, 08:00 - 10:00: Introduction: ideas, matrix results, history. 7 May,


  1. Numerical tensor methods and their applications I.V. Oseledets 8 May 2013 I.V. Oseledets Numerical tensor methods and their applications

  2. All lectures 4 lectures, 2 May, 08:00 - 10:00: Introduction: ideas, matrix results, history. 7 May, 08:00 - 10:00: Novel tensor formats (TT, HT, QTT). 8 May, 08:00 - 10:00: Advanced tensor methods (eigenproblems, linear systems). 14 May, 08:00 - 10:00: Advanced topics, recent results and open problems. I.V. Oseledets Numerical tensor methods and their applications

  3. Brief recap of Lecture 2 Tensor Train format Arithmetics Rounding QTT-format (idea of tensorization) Cross approximation I.V. Oseledets Numerical tensor methods and their applications

  4. Plan of lecture 2 QTT-format: explicit representations of functions QTT-format: explicit representation of operators Classification theory QTT-Fourier transform QTT-convolution Linear systems Eigenvalue problems I.V. Oseledets Numerical tensor methods and their applications

  5. QTT-format (publications-first) [1] S. V. Dolgov, B. N. Khoromskij, and D. V. Savostyanov. Superfast Fourier transform using QTT approximation. J. Fourier Anal. Appl. , 18(5):915–953, 2012. [2] V. Kazeev, B. N. Khoromskij, and E. E. Tyrtyshnikov. Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity. Technical Report 36, MPI MIS, Leipzig, 2011. [3] V. A. Kazeev and B. N. Khoromskij. Low-rank explicit QTT representation of the Laplace operator and its inverse. SIAM J. Matrix Anal. Appl. , 33(3):742–758, 2012. [4] B. N. Khoromskij. O ( d log n ) –Quantics approximation of N – d tensors in high-dimensional numerical modeling. Constr. Appr. , 34(2):257–280, 2011. [5] I. V. Oseledets. Approximation of 2 d × 2 d matrices using tensor decomposition. SIAM J. Matrix Anal. Appl. , 31(4):2130–2145, 2010. I.V. Oseledets Numerical tensor methods and their applications

  6. QTT-format We have a vector v of values of a function f on a uniform grid with 2 d points: v ( i ) = f ( x i ) , x i = a + ih , h = ( b − a ) / ( n − 1 ) . I.V. Oseledets Numerical tensor methods and their applications

  7. QTT-format We have a vector v of values of a function f on a uniform grid with 2 d points: v ( i ) = f ( x i ) , x i = a + ih , h = ( b − a ) / ( n − 1 ) . Reshaping into a tensor: i → ( i 0 , i 1 , . . . , i d − 1 ) . i = i 1 + 2 i 2 + 4 i 3 + . . . + 2 d − 1 i d V ( i 1 , . . . , i d ) = v ( i ) . I.V. Oseledets Numerical tensor methods and their applications

  8. QTT-format Finally, we have: t k = a d + 2 k i k h V ( i 1 , . . . , i d ) = f ( t 1 + . . . + t d ) , I.V. Oseledets Numerical tensor methods and their applications

  9. Exponential function f ( x ) = exp λ x , Then f ( t 1 + . . . + t d ) = exp ( λ t 1 ) . . . exp ( λ t d ) , it has rank 1! I.V. Oseledets Numerical tensor methods and their applications

  10. Linear function f ( x ) = x f ( t 1 + . . . + t d ) = t 1 + . . . + t d I.V. Oseledets Numerical tensor methods and their applications

  11. Linear function(full steps) t 1 + t 2 + t 3 + t 4 = I.V. Oseledets Numerical tensor methods and their applications

  12. Linear function(full steps) � t 1 1 � � � 1 t 1 + t 2 + t 3 + t 4 = t 2 + t 3 + t 4 I.V. Oseledets Numerical tensor methods and their applications

  13. Linear function(full steps) � t 1 1 � � � 1 t 1 + t 2 + t 3 + t 4 = = t 2 + t 3 + t 4 � t 1 1 � � � � � 1 0 1 = t 2 1 t 3 + t 4 I.V. Oseledets Numerical tensor methods and their applications

  14. Linear function(full steps) � t 1 1 � � � 1 t 1 + t 2 + t 3 + t 4 = = t 2 + t 3 + t 4 � t 1 1 � � � � � 1 0 1 = = t 2 1 t 3 + t 4 � t 1 1 � � � � � � � 1 0 1 0 1 = t 2 1 t 3 1 t 4 I.V. Oseledets Numerical tensor methods and their applications

  15. Sine function Similar representation can be obtained for a sine function: f ( x ) = sin λ x f ( t 1 + . . . + t d ) = sin ( t 1 + . . . + t d ) = � � sin t 2 � � sin t d − 1 � � cos x d � � − cos t 2 − cos t d − 1 = sin t 1 cos t 1 . . . cos t 2 sin t 2 cos t d − 1 sin t d − 1 sin x d The rank is still 2! I.V. Oseledets Numerical tensor methods and their applications

  16. General result Theorem Let f be such that (O. Const. Approx., 2013) r � f ( x + y ) = u α ( x ) v α ( y ) α = 1 then the QTT-ranks are bounded by r Interesting example: rational functions I.V. Oseledets Numerical tensor methods and their applications

  17. TT-format for matrices What about matrices? I.V. Oseledets Numerical tensor methods and their applications

  18. TT-format for matrices What about matrices? Solution - a vector x associated with a d -tensor X ( i 1 , . . . , i d ) Linear operators, acting on such tensors, can be indexed as A ( i 1 , . . . , i d ; j 1 , . . . , j d ) . Terminology: d -level matrix I.V. Oseledets Numerical tensor methods and their applications

  19. Two-level matrix: illustration Even in 2d it is interesting: A , B are n × n , Kronecker product   a 11 B a 12 B a 13 B a 14 B   a 21 B a 22 B a 23 B a 24 B   C = A ⊗ B =   a 31 B a 32 B a 33 B a 34 B a 41 B a 42 B a 43 B a 44 B I.V. Oseledets Numerical tensor methods and their applications

  20. Two-level matrix: illustration In the index form: C = A ⊗ B C ( i 1 , i 2 ; j 1 j 2 ) = A ( i 1 , j 1 ) B ( i 2 , j 2 ) I.V. Oseledets Numerical tensor methods and their applications

  21. Two-level matrix: illustration In the index form: C = A ⊗ B C ( i 1 , i 2 ; j 1 j 2 ) = A ( i 1 , j 1 ) B ( i 2 , j 2 ) Exactly rank-1 decomposition under permutation I.V. Oseledets Numerical tensor methods and their applications

  22. Back to d -dimensions Let A be a d-level matrix: A ( i 1 , . . . , i d ; j 1 , . . . , j d ) (say, d -dimensional Laplace operator) I.V. Oseledets Numerical tensor methods and their applications

  23. Back to d -dimensions Let A be a d-level matrix: A ( i 1 , . . . , i d ; j 1 , . . . , j d ) (say, d -dimensional Laplace operator) No low TT-ranks if considered as a 2 d -array! I.V. Oseledets Numerical tensor methods and their applications

  24. Back to d -dimensions Right way: permute indices B ( i 1 j 1 ; i 2 j 2 ; . . . i d j d ) = A ( i 1 , . . . , i d ; j 1 , . . . , j d ) A ( i 1 , . . . , i d ; j 1 , . . . , j d ) = A 1 ( i 1 , j 1 ) A 2 ( i 2 , j 2 ) . . . A d ( i d , j d ) I.V. Oseledets Numerical tensor methods and their applications

  25. Matrix-by-vector product A ( i 1 , . . . , i d ; j 1 , . . . j d ) = A 1 ( i 1 , j 1 ) . . . A d ( i d , j d ) X ( j 1 , . . . , j d ) = X 1 ( j 1 ) . . . X d ( j d ) Y ( I ) = � J A ( I , J ) X ( J ) Exercise: Find a formula I.V. Oseledets Numerical tensor methods and their applications

  26. QTT-matrix Matrices in the QTT-format: 1 i , j = 1 , . . . , 2 d . a ij = i − j + 0 . 5 , Let us see what are the ranks. (Demo) I.V. Oseledets Numerical tensor methods and their applications

  27. Laplace operator Consider an operator − d 2 dx 2 with Dirichlet boundary conditions, discretized using the simplest finite-difference scheme: (Illustration for n = 4)   2 − 1 0 0   − 1 2 − 1 0   ∆ =   0 − 1 2 − 1 0 0 − 1 2 (Demo) I.V. Oseledets Numerical tensor methods and their applications

  28. Laplace operator V. Kazeev: QTT-ranks of the Laplace operator are bounded by 3 I.V. Oseledets Numerical tensor methods and their applications

  29. Laplace operator: general results We will need a special matrix-by-matrix product: � � � � A 11 A 12 B 11 B 12 = ✶ A 21 A 22 B 21 B 22 � � A 11 ⊗ B 11 + A 12 ⊗ B 21 A 11 ⊗ B 12 + A 12 ⊗ B 22 = A 21 ⊗ B 11 + A 22 ⊗ B 21 A 21 ⊗ B 12 + A 22 ⊗ B 22 Doing Kronecker product for the blocks! I.V. Oseledets Numerical tensor methods and their applications

  30. Basic QTT-blocks � � � � � � 1 0 0 1 0 1 I = J = P = , , , 0 1 0 0 1 0 � � � � 0 0 1 0 I 2 = , I 1 = , 0 1 0 0 � � � � − 1 1 1 1 E = , F = , − 1 1 1 1 � � � � − 1 − 1 0 0 K = , L = , 0 1 1 0 I.V. Oseledets Numerical tensor methods and their applications

  31. QTT representation of 1D-Laplace     ✶ ( d − 2 ) I J ′ J 2 I − J − J ′ � �     ∆ ( d ) = I J ′ J J − J ✶   ✶   DD J ′ − J ′ I.V. Oseledets Numerical tensor methods and their applications

  32. QTT representation in the Toolbox In the TT-Toolbox, it is defined via the function tt_qlaplace_dd I.V. Oseledets Numerical tensor methods and their applications

  33. Wavelets and tensor trains QTT can be applied to matrices: A ( i , j ) → A ( i 1 , . . . , i d , j 1 , . . . , j d ) → A ( i 1 , j 1 , i 2 , j 2 , . . . , i d , j d ) I.V. Oseledets Numerical tensor methods and their applications

  34. Wavelets and tensor trains Smooth function and/or special function: 512 × 512 “Hilbert image”: a ij = 1 . 0 / ( i − j + 0 . 5 ) 540 bytes (QTT) vs 8 KB (JPEG) I.V. Oseledets Numerical tensor methods and their applications

  35. Wavelets and tensor trains QTT compression of simple images Good: Triangle BAD: Circle 70 KB (QTT) vs 8 KB 50 bytes (QTT) vs 8 KB (JPEG) (JPEG) I.V. Oseledets Numerical tensor methods and their applications

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend