tem for magnetism challenges and competitors
play

TEM for magnetism: challenges and competitors Olivier Fruchart - PowerPoint PPT Presentation

TEM for magnetism: challenges and competitors Olivier Fruchart Institut Nel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Nel, Grenoble, France. Institut Nel, Grenoble, France.


  1. TEM for magnetism: challenges and competitors Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Néel, Grenoble, France. Institut Néel, Grenoble, France. http://perso.neel.cnrs.fr/olivier.fruchart/ http://perso.neel.cnrs.fr/olivier.fruchart/

  2. MOTIVATION FOR MICROSCOPY / Length scales (fundamental) Anisotropy exchange length Magnetic domains (domain wall width) 2 + K sin E = A ( ∂ x i m j ) 2 θ Numerous and complex magnetic domains Exchange Anisotropy 3 J / m J / m Δ u = √ A / K Anisotropy exchange length: Δ u ≈ 1 nm → Δ u ≥ 100 nm Hard Soft (History : Weiss domains) Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.2 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  3. MOTIVATION FOR MICROSCOPY / Length scales (technology) Magnetic bits on hard disk drives CoPtCrTaB Hard disk (old…) Relevant spatial resolution  10-100nm S. Takenoiri, J. Magn. Magn. Mater. 321, 562 (2009) Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.3 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  4. MOTIVATION FOR MICROSCOPY / Time scale Relevant time resolution μ : thermally-activated magnetization processes  >1 s  1 ns : precession of magnetization  1 ps : ultrafast demagnetization Demonstration: 1999 Basics of precessional switching Magnetization dynamics: Landau-Lifshitz-Gilbert equation: [ ] α   d M d M = − γ 0 × + × M H M   eff dt M  dt  s γ 0 Gyromagnetic factor gq γ 0 = µ γ γ = 0 2 m γ π = / 2 28 GHz/T Effective field H e f f (including applied) α Damping coefficient (10 -3 → 10 -1 ) C. Back et al., Science 285, 864 (1999) Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.4 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  5. MOTIVATION FOR MICROSCOPY / Link with structure Example : domain wall to be moved along a 1d system Without applied field With applied field F ( x )= E ( x )− 2 μ 0 M S H x E ( x ) x F ( x )=− d E F ( x ) =− d F d x =− d E d x + 2 μ 0 M S H d x E. Kondorski, On the nature of coercive force and irreversible changes in magnetisation, Phys. Z. Sowjetunion 11, 597 (1937) Relevant information  Microstructure  Chemical composition Spectroscopy, diffraction etc.  Crystal structure Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.5 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  6. MOTIVATION FOR MICROSCOPY / Practical considerations Versatility Speed of acquisition  Samples made with lithography  Sample preparation needed ? or ex situ OK ?  How much time for one image ?  Need for sample preparation ?  Compatible with various environments ? (temperature, field etc.) Access What is probed  Large-scale instrument or in-lab ?  Surface or volume technique ?  Expensive or cheap ?  Sensitivity ?  Magnetization, stray field, other ? Conclusion No universal technique Many criteria to be balanced Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.6 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  7. MAGNETISM over time 1956 RAMAC, IBM, first hard disk drive Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.7 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  8. MAGNETISM over time 1986 1998 Discovery of Giant Magneto-Resistance GMR implemented in HDD read heads X10 6 increase of density after 1956 → Nobel prize in Physics 2007 Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.8 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  9. MAGNETISM over time – What is ahead ? Physics (recent) Technology (to come)  Spin-transfer torques.  Magnetic Random Access Induces magnetization Memories (dots) switching, oscillations  Logic and memory devices  Interfacial effects, based on domain walls. 3D chirality memories ? Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.9 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  10. PROSPECTS FOR APPLICATIONS MRAM = Magnetic Random Access Memory Overview Detail of a cell (nb : old design) ‘Bit’ ligne I 2 Current Spin valve Current Magn flux lines Conductor (Cu) I 1 Flux guides Transistor Main features : Solid state memory Non-volatile and fast Still issues remaining Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.10 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  11. PROSPECTS FOR APPLICATIONS – MAGNETIC MEMORIES IN 3D ? Race-track memory in arrays of vertical nanowires Advantages  Goes beyond areal density  Only 2D R/W devices IBM, patents (2004) Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.11 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  12. OBJECTS TO INVESTIGATE Spin textures : 2D/3D Constrained walls Skyrmions and helix (eg : in stripes) : 1D/2D Cu\Fe\Ni stackings, interfacial Fe 0.5 Co 0.5 Si, bulk X. Z. Yu et al., Nature 465, G. Chen et al., Phys. Rev. Permalloy (15nm) - Stripe 500nm 901 (2010) Lett. 110, 177204 (2013) Bloch point (0D) Magnetic vortices (1D/0D)  Point with vanishing magnetization W. Döring, J. Appl. Phys. 39, 1006 (1968) Diameter ~ 10nm T. Shinjo et al., Science 289, 930 (2000) Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.12 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  13. COMPETITORS / Scanning probe Spin-polarized STM Magnetic Force Microscopy NV center microscopy Fe(1ML)/W(001) FePt thin films Square Fe20Ni80 dot 2 μ m 5 μ m Magnetic domain Antiferromagnetic Signature of flux-closure walls domain O.F. M. Bode et al., Nat. Mater. 5, L. Rondin et al., arXiv:1302.7307 Sample courtesy: A. Marty 477-481 (2006) REVIEW : REVIEW : R. Wiesendanger, Rev. Mod. R. Proksch et al., Modern Phys. 81, 1495 (2009) techniques for characterizing magnetic materials, Springer, Overview p.411 (2005) Others : BEMM, scanning Hall probe, near-field  Large variety optical etc.  Rather slow Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.13 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  14. COMPETITORS / Electron-based SPLEEM SEMPA Spin-Polarized Low Energy Scanning Electron Microsc. Electron Microscopy with Polarization Analysis 7 μ m 1.5 μ m Stripes of Fe/W(110) Stripes of Fe/W(110) Maze of Fe/W(001) REVIEW: W. Wulfhekel et al., N. Rougemaille et al., Eur. Phys. Rev. B 68, Phys. J. Appl. Phys. 50, 20101 144416/1-9 (2003) (2010)  Requires sample preparation Overview  Good spatial resolution  Some information about structure Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.14 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  15. COMPETITORS / Synchrotron-light TXM XMCD-PEEM X-ray Magnetic Circular Dichroism Transmission X-ray Microscopy Photo-Emission Electron Microsc. Co\Cu\FeNi trilayer FeNi 6μm square dot → time resolution → elemental resolution J. Vogel et al., J. Phys. : Condens. Matter 19, J. Raabe et al., Phys. Rev. Lett. 94, 217204 (2005) 476204 (2007) Others : holography, scattering  Elemental sensitivity Overview  Compatible with time resolution  Rather versatile Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.15 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  16. COMPETITORS / Combining surface and projection PEEM Understanding the contrast  Above wire → inform about surface magnetization  In the shadow → inform about volume magnetization Previous PEEM in shadow : J. Kimling et al., Phys. Rev. B 84, 174406 (2011) Identification Beam along wire Beam across wire  Locate domain walls  Inspect domain wall O.F., unpublished Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.16 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  17. Overview of some magnetic microscopies with spatial resoltuion better than 50nm Sp-STM MFM NV BEMM SEMPA SPLEEM TEM XMCD XMCD- -PEEM microscopy (Fresnel ZP) 5-10 1-2nm 25nm Resolution <1nm 15nm 1-5nm 10nm 10nm 15nm nm → 10nm Sensitivity Sensitivity High Med High Med Med High Low High High In-field YES Limited Limited YES local No? Limited No? YES No Versatile* YES No Yes Yes UHV Limited Yes Limited Dynamics No No No No New Yes Yes No No Element- Limited No No No No Limited Limited Yes Yes sensitive Probes m i m i m x , y m k m k m m H d H d * Versatile may mean: Conclusions Sample preparation, measurement of brought-in  Worse and best come together samples etc.  Need for combining various instruments Olivier Fruchart – Inauguration I2TEM – Toulouse, 17 June 2013 – p.17 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend