telegraph equation from the six vertex model
play

Telegraph equation from the six-vertex model Vadim Gorin MIT - PowerPoint PPT Presentation

Telegraph equation from the six-vertex model Vadim Gorin MIT (Cambridge) and IITP (Moscow) July 2018 Telegraph equation Resistance R Inductance L Capacitance C Conductance G Wiki/Pixabay


  1. Telegraph equation from the six-vertex model Vadim Gorin MIT (Cambridge) and IITP (Moscow) July 2018

  2. � � �� � � Telegraph equation � � � � � � Resistance R Inductance L Capacitance C Conductance G Wiki/Pixabay Voltage V Current I ∂ V ∂ x ( x , t ) = − L · ∂ I ∂ t ( x , t ) − R · I ( x , t ) ∂ x ( x , t ) = − C · ∂ V ∂ I ∂ t ( x , t ) − G · V ( x , t ) or V xx − LC · V tt − ( RC + GL ) · V t − GR · V = 0 � �� � � �� � Wave equation Effect of losses

  3. Six–vertex model O H O H O H O H O Square grid with O in the vertices H H H H H and H on the edges. O H O H O H O H O H H H H H O H O H O H O H O H H H H H O H O H O H O H O H H H H H O H O H O H O H O

  4. Six–vertex model Square grid with O in the vertices O H O H O H O H O and H on the edges. H H H H H O H O H O H O H O Finite/infinite domain. H H H H H O H O H O H O H O H H H H H O H O H O H O H O H H H H H O H O H O H O H O

  5. Six–vertex model Square grid with O in the vertices O H O H O H O H O and H on the edges. H H H H H O H O H O H O H O Finite/infinite domain. H H H H H Configurations: possible matchings O H O H O H O H O of all atoms inside domain into H H H H H H 2 O molecules. O H O H O H O H O This is square ice model . H H H H H Real-world ice has somewhat similar O H O H O H O H O (although 3d) structure.

  6. Six–vertex model Square grid with O in the vertices O H O H O H O H O and H on the edges. H H H H H O H O H O H O H O Finite/infinite domain. H H H H H Configurations: possible matchings O H O H O H O H O of all atoms inside domain into H H H H H H 2 O molecules. O H O H O H O H O This is square ice model . H H H H H Real-world ice has somewhat similar O H O H O H O H O (although 3d) structure. Also known as six vertex model . H H H H O O H O H H O O H O H H H H

  7. Six–vertex model: Gibbs measures H H H H O O H O H H O O H O H H H H a 1 a 2 b 1 b 2 c 1 c 2 Statistical mechanics starting from (Lieb–67): O H O H O H O H O Assign Gibbs weights H H H H H O H O H O H O H O a #( a 1 ) a #( a 2 ) b #( b 1 ) b #( b 2 ) c #( c 1 ) c #( c 2 ) 1 2 1 2 1 2 H H H H H Z ( a 1 , a 2 , b 1 , b 2 , c 1 , c 2 ) O H O H O H O H O H H H H H [ Depends only on b 1 b 2 a 1 a 2 and c 1 c 2 a 1 a 2 .] O H O H O H O H O H H H H H Asymptotic properties of O H O H O H O H O Gibbs measures?

  8. Six–vertex model: Gibbs measures H H H H O O H O H H O O H O H H H H a 1 a 2 b 1 b 2 c 1 c 2 O H O H O H O H O Assign Gibbs weights H H H H H O H O H O H O H O a #( a 1 ) a #( a 2 ) b #( b 1 ) b #( b 2 ) c #( c 1 ) c #( c 2 ) 1 2 1 2 1 2 H H H H H Z ( a 1 , a 2 , b 1 , b 2 , c 1 , c 2 ) O H O H O H O H O H H H H H [ Depends only on b 1 b 2 a 1 a 2 and c 1 c 2 a 1 a 2 .] O H O H O H O H O H H H H H Asymptotic properties of O H O H O H O H O Gibbs measures? Understanding is still very limited.

  9. Question for today Telegraph equation Six–vertex model O H O H O H O H O H H H H H O H O H O H O H O H H H H H � � �� � � O H O H O H O H O � � � � � � V xx − V tt − α V t − β V x − γ V = 0 H H H H H O H O H O H O H O H H H H H O H O H O H O H O a #( a 1) a #( a 2) b #( b 1) b #( b 2) c #( c 1) c #( c 2) 1 2 1 2 1 2 Z ( a 1 , a 2 , b 1 , b 2 , c 1 , c 2 ) What do they have in common?

  10. Stochastic six–vertex model a 1 a 2 b 1 b 2 c 1 c 2 H H H O H H O O H H O O H O H H H H An equivalent representation Collection of paths on the plane

  11. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 H H H O H H O O H H O O H O H H H H Assumption: a 1 = a 2 = 1 , b 1 + c 1 = 1 , b 2 + c 2 = 1 (Gwa–Spohn–92) � � ∆ = a 1 a 2 + b 1 b 2 − c 1 c 2 Implies ≥ 1 2 √ a 1 a 2 b 1 b 2

  12. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 Take arbitrary boundary conditions in the quadrant . . . 5 4 3 2 1 0 4 5 1 2 3 . . .

  13. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 Proceed with sequential stochastic sampling . . . b 1 5 4 choice 3 2 1 − b 1 1 . . . 0 3 4 5 1 2

  14. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 Proceed with sequential stochastic sampling . . . 5 4 no choice 3 2 1 0 3 4 5 1 2 . . .

  15. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 Proceed with sequential stochastic sampling . . . 5 4 no choice 3 2 1 0 3 4 5 1 2 . . .

  16. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 Proceed with sequential stochastic sampling . . . 5 4 no choice 3 2 1 0 3 4 5 1 2 . . .

  17. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 Proceed with sequential stochastic sampling . . . b 2 5 4 choice 3 2 1 − b 2 1 . . . 0 3 4 5 1 2

  18. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 Proceed with sequential stochastic sampling . . . 5 4 no choice 3 2 1 0 3 4 5 1 2 . . .

  19. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 Proceed with sequential stochastic sampling . . . b 1 5 4 choice 3 2 1 − b 1 1 . . . 0 3 4 5 1 2

  20. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 Proceed with sequential stochastic sampling . . . b 2 5 4 choice 3 2 1 − b 2 1 . . . 0 3 4 5 1 2

  21. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 Proceed with sequential stochastic sampling . . . b 2 5 4 choice 3 2 1 − b 2 1 . . . 0 3 4 5 1 2

  22. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 Proceed with sequential stochastic sampling . . . b 1 5 4 choice 3 2 1 − b 1 1 . . . 0 3 4 5 1 2

  23. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 Until the quadrant is filled . . . 5 4 3 2 1 0 4 5 1 2 3 . . .

  24. Stochastic six–vertex model 1 1 b 1 b 2 1 − b 1 1 − b 2 The resulting paths are level lines of the height function . . . 3 2 5 2 1 4 • Height is 0 at the origin, 3 • increases up, 1 0 • decreases to the 2 right. − 1 1 0 − 1 − 2 0 4 5 1 2 3 . . .

  25. Domain–wall and fixed weights . . . b 1 b 2 5 4 3 2 2 5 s = 1 − b 1 1 − b 2 4 3 2 2 1 4 1 1 1 3 2 2 3 LH ( Lx , Ly ) → h ( x , y ) =  2 1 1 0 0 x y > s − 1 , 0 , 2   ( √ s x − √ y ) 2   y ≤ s − 1 s ≤ x , 1 1 1 0 0 1 − s 1    x  y − x , y < s . 4 0 3 5 . . . 1 2 Theorem. (Borodin–Corwin–Gorin-14) For domain–wall boundary conditions and fixed 0 < b 2 < b 1 < 1 , 1 L H ( Lx , Ly ) → h ( x , y ) with fluctuations on L 1 / 3 scale given by the Tracy–Widom distribution. TW = universal law for the largest eigenvalue of Hermitian matrices and for particle system in Kardar–Parisi–Zhang class

  26. Domain–wall and fixed weights . . . b 1 b 2 5 4 3 2 2 5 s = 1 − b 1 1 − b 2 4 3 2 2 1 4 1 1 1 3 2 2 3 LH ( Lx , Ly ) → h ( x , y ) =  2 1 1 0 0 x y > s − 1 , 0 , 2   ( √ s x − √ y ) 2   y ≤ s − 1 s ≤ x , 1 1 1 0 0 1 − s 1    x  y − x , y < s . 4 0 3 5 . . . 1 2 Theorem. (Borodin–Corwin–Gorin-14) For domain–wall boundary conditions and fixed 0 < b 2 < b 1 < 1 , 1 L H ( Lx , Ly ) → h ( x , y ) with fluctuations on L 1 / 3 scale given by the Tracy–Widom distribution. ρ x · s + ρ y · ( s + ( s − 1) ρ ) 2 = 0 , ρ = h x . 1st–order non-linear PDE (Gwa–Spohn–92) (Reshetikhin–Sridhar–16)

  27. Domain–wall and fixed weights . . . b 1 b 2 5 4 3 2 2 5 s = 1 − b 1 1 − b 2 4 3 2 2 1 4 1 1 1 3 2 2 3 LH ( Lx , Ly ) → h ( x , y ) =  2 1 1 0 0 x y > s − 1 , 0 , 2   ( √ s x − √ y ) 2   y ≤ s − 1 s ≤ x , 1 1 1 0 0 1 − s 1    x  y − x , y < s . 4 0 3 5 . . . 1 2 ρ x · s + ρ y · ( s + ( s − 1) ρ ) 2 = 0 , ρ = h x • Instead of b 1 , b 2 , only s . Where is the second parameter? • Where is the linear telegraph equation?

  28. Domain–wall and fixed weights . . . b 1 b 2 5 4 3 2 2 5 s = 1 − b 1 1 − b 2 4 3 2 2 1 4 1 1 1 3 2 2 3 LH ( Lx , Ly ) → h ( x , y ) =  2 1 1 0 0 x y > s − 1 , 0 , 2   ( √ s x − √ y ) 2   y ≤ s − 1 s ≤ x , 1 1 1 0 0 1 − s 1    x  y − x , y < s . 4 0 3 5 . . . 1 2 ρ x · s + ρ y · ( s + ( s − 1) ρ ) 2 = 0 , ρ = h x • Instead of b 1 , b 2 , only s . Where is the second parameter? • Where is the linear telegraph equation? (Borodin–Gorin–18): One needs to rescale weights b 1 , b 2 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend