tau g 2 and beyond
play

Tau g-2 and beyond Lydia Beresford HEP Seminar Birmingham, 29th - PowerPoint PPT Presentation

Tau g-2 and beyond Lydia Beresford HEP Seminar Birmingham, 29th January 2019 Our proposal 1908.05180 Lydia Beresford 2 October 2018 ~ One year on Lydia Beresford 3 What is g-2? How objects interact with a magnetic


  1. Tau g-2 and beyond Lydia Beresford HEP Seminar Birmingham, 29th January 2019

  2. Our proposal 1908.05180 Lydia Beresford � 2

  3. … October 2018 ~ One year on τ Lydia Beresford � 3

  4. � What is g-2? How objects interact with a magnetic field Magnetic moment: Quantifies torque experienced in � field B τ = μ × B torque magnetic moment Possessed by e.g. bar magnet, loop of current etc. Lydia Beresford � 4

  5. What is g-2? Charged particles with spin have an intrinsic magnetic moment μ = g q 2 m S For spin 1/2 particles: ℓ ℓ γ γ μ . B ℓ ℓ g = 2 + loop corrections Dirac, 1928 Lydia Beresford � 5

  6. What is g-2? Anomalous magnetic moment a = ( g − 2) 2 Lydia Beresford � 6

  7. Why is it interesting? Powerful probe of new physics New particles could be in the loop Example: SUSY Scalar Lepton Dark Matter Lydia Beresford � 7

  8. � Why is it interesting? Powerful probe of new physics Sensitive to compositeness Historical examples: proton, neutron u Neutron g-2: -5.8 Composite! → d d Lydia Beresford � 8

  9. Why is it interesting? Fundamental test of QED -2.5 � tension σ Electron g-2: 10 -8 precision 3-4 � tension Muon g-2: 10 -7 precision σ Electron: Odom et at PRL (2006) Bouchendira et al PRL (2011) Aoyama et al 1205.5368 Parker et al Science (2018) Muon: BNL E821 hep-ex/0602035 J-PARC 1901.03047 Davier et al 1908.00921 Keshavarzi, Nomura and Teubner 1802.02995 Lydia Beresford � 9

  10. a time evolution Lusiani (2019) μ Lydia Beresford � 10

  11. Muon g-2 experiment @ Fermilab ‘if I were to put my money on something that would signal new physics, it’s the [muon] g-2 experiment at Fermilab’ Brian Cox Lydia Beresford � 11

  12. Muon g-2 experiment @ Fermilab Further details Basic idea: • Inject polarised muons eB • Spin precesses around B ω a = a μ at rate related to a mc μ • Measure precession rate via decay to positron New muon g-2 results coming soon - one to watch! Lydia Beresford � 12

  13. What about tau g-2? Mass 0.511 MeV 106 MeV 1.7 GeV Lydia Beresford � 13

  14. � � What about tau g-2? > � by order of magnitude! m τ m μ Composite? → 280x more sensitive than � a μ δ a τ ∝ m 2 l / m 2 m 2 τ / m 2 � and � μ = 280 SUSY Martin and Wells PRD (2001) Models for electron & muon g-2 could apply here too e.g. Z’, dark photon, 2HDM … Lydia Beresford � 14

  15. � Problem: Lifetime ~ 10 -13 s τ ~ 10 -6 s μ Can’t use same technique! → Lydia Beresford � 15

  16. Solution: Photon collisions Lydia Beresford � 16

  17. Solution: Photon collisions Photons from electric field surrounding electrons collide to produce new particles e p e Lydia Beresford � 17

  18. PDG value Delphi EPJC (2004) DELPHI 2004, LEP collider e e τ Cross section sensitive to τ moments e e Photo production of tau pairs Lydia Beresford � 18

  19. Disgression Turning light into matter major goal in laser physics Lydia Beresford � 19

  20. Disgression Breit Wheeler process Real photon, virtual @ collider Turning light into matter e major goal in laser physics e Proposal paper Lydia Beresford � 20

  21. Disgression Lydia Beresford � 21

  22. PDG value Delphi EPJC (2004) DELPHI 2004, LEP collider e e τ Cross section sensitive to τ moments e e Photo production of tau pairs Lydia Beresford � 22

  23. � � � � a exp Delphi EPJC (2004) Sibling Rivalry τ a theory Eidelman, Passera hep-ph/0701260 τ Tensions seen for electron & muon, what about the tau? Beresford & Liu 1 � 2 � Existing measurement a e Harvard06 (error bar × 10 9 ) Theoretical prediction a µ BNL06 (error bar × 10 6 ) PbPb → Pb( �� → ⌧⌧ )Pb (this work) LHC √ s NN = 5 . 02 TeV a ⌧ DELPHI04 SM a pred (error bar × 10 4 ) ⌧ − ⌧ B ⌧ Λ = 140 GeV Λ = 250 GeV − 0 . 06 − 0 . 05 − 0 . 04 − 0 . 03 − 0 . 02 − 0 . 01 0 . 00 0 . 01 0 . 02 a ` = ( g ` − 2) / 2 a exp = − 0.018 (17) τ a theory = 0.00117721 (5) τ Lydia Beresford � 23

  24. Can we beat it? Many interesting proposals for future LHeC/Fcc-he Belle II . Köksal 1809.01963 Eidelman et al 1601.07987 Gutiérrez-Rodríguez et al 1903.04135 Chen, Wu 1803.00501 Bent crystal CLIC/ILC/Fcc-ee Fomin et al 1810.06699 Koksal et al 1804.02373 Howard et al 1810.09570 Fu et al 1901.04003 HL-LHC Galon, Rajaraman and Tait 1610.01601 Lydia Beresford � 24

  25. What can we do right now? Lydia Beresford � 25

  26. The LHC is also a photon collider Lydia Beresford � 26

  27. The LHC is also a photon collider p p Pb p p Pb Pb ATLAS 13 TeV 8.16 TeV 5.02 TeV s ~140 fb -1 ~170 nb -1 ~2 nb -1 ℒ ∝ Z 2 ∝ Z 4 σ - Z = 82 for Pb Lydia Beresford � 27

  28. The LHC is also a photon collider p p Pb p p Pb Pb ATLAS 5.02 TeV 13 TeV 8.16 TeV s ~140 fb -1 ~170 nb -1 ~2 nb -1 ℒ ∝ Z 2 σ - Z 4 ∝ Z = 82 for Pb Lydia Beresford � 28

  29. Head on PbPb collision Lydia Beresford � 29

  30. Ultra Peripheral PbPb collision electron muon Pb+Pb, 5.02 TeV Run: 365914 Event: 562492194 2018-11-14 18:05:31 CEST All calo cells with E T > 500 MeV shown Lydia Beresford � 30

  31. � Ultra Peripheral PbPb collision Ultra Peripheral PbPb collisions Super clean with ~ 0 pile-up One month to gather dataset Low trigger thresholds � Trigger on soft taus! → Quantify potential using MC → MG with modified photon flux + Pythia + Delphes (ATLAS) Lydia Beresford � 31

  32. � Aguila, Cornet and Illana PLB (1991) Di-tau Production Beresford, Liu 1908.05180 LHC PbPb Pb Pb Ze ⇡ ± ⌧ ⇡ 0 � τ ⌫ ⌧ ⌧ ⌫ ⌧ � τ ⌫ ` � a ⌧ ` Ze Pb Pb Photo production of tau pairs Not yet observed @ LHC Lydia Beresford � 32

  33. � � � Tau decays 46% 35% 19% 1 prong Leptonic 3 prong τ ± → π ± ν τ τ ± → l ± ν l ν τ τ ± → π ± π ∓ π ± ν τ + neutral � ’s π + neutral � ’s π Tau is only lepton that can decay into hadrons Lydia Beresford � 33

  34. Tau decays Di-tau pair H1 detector @ HERA Lydia Beresford � 34

  35. Backgrounds Generated: Pb Pb Ze ⇡ ± ⌧ ⇡ 0 � ℓ , q ⌫ ⌧ ⌧ ⌫ ⌧ � ℓ , q ⌫ ` � a ⌧ ` Ze Pb Pb Lydia Beresford � 35

  36. Signal Regions Need low p T : e, mu, track > 4.5, 3, 0.5 GeV Signal Regions (SRs) 1 � + 1 track ℓ 1 � + 2 track ℓ 1 � + 3 track ℓ Lydia Beresford � 36

  37. Background mitigation 1 � + 1 track SR Keep ℓ And veto � & � masses J / ψ Υ Lydia Beresford � 37

  38. Setting constraints SM effective field theory for modified moments (& SM signal) 10 1 − PbPb Pb( )Pb, s = 5.02 TeV, 2.0 nb → γ γ → τ τ LB JL SR1 l 1T 1 Sample (Yield) , a =0, d =0 (1.3e+03) τ τ δ δ τ τ , a =0.02, d =0 (1.8e+03) τ τ δ δ τ τ , a =-0.02, d =0 (1.3e+03) τ τ δ δ Entries τ τ , a =0.0, d =0.015 (2.9e+03) τ τ δ δ τ τ − 1 10 , a =0.0, d =-0.015 (2.9e+03) τ τ δ δ τ τ Unit normalised 2 − 10 3 − 10 0 2 4 6 8 10 12 14 16 18 20 p (l ) [GeV] 1 T Modifying moments alters shape of lepton p T Lydia Beresford � 38

  39. � Putting it all together: a τ χ 2 Assume observe SM & quantify constraint using � 1 − s = 5.02 TeV, 2 nb , δ d = 0.0 , ζ = ζ = 0.1 τ s b 10 LB JL 8 SR1 l 1T, SR1 l 2T Assuming 10% and SR1 l 3T combined systematic SR1 l 1T p [ 6],[>6] GeV, ∈ ≤ 6 l T SR1 l 2T and SR1 l 3Tcombined 2 χ Σ χ 2 for all SRs 95 % CL 4 (orthogonal) 2 68 % CL 0 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0.01 0.02 − − − − − − − a δ τ Shape analysis strengthens constraints :) Split 1 � + 1 track SR @ 6 GeV � Coarse shape analysis ℓ → Lydia Beresford � 39

  40. Putting it all together: a τ Beresford & Liu 1 � 2 � Existing measurement a e Harvard06 (error bar × 10 9 ) Theoretical prediction PbPb → Pb( �� → ⌧⌧ )Pb (this work) a µ BNL06 (error bar × 10 6 ) LHC √ s NN = 5 . 02 TeV PDG a ⌧ DELPHI04 a ⌧ 2 nb − 1 , 10% syst LHC PbPb a ⌧ 2 nb − 1 , 5% syst potential a ⌧ 20 nb − 1 , 5% syst SM a pred (error bar × 10 4 ) ⌧ Λ = 140 GeV Λ = 250 GeV SMEFT a pred , C ⌧ B = − 1 ⌧ − 0 . 06 − 0 . 05 − 0 . 04 − 0 . 03 − 0 . 02 − 0 . 01 0 . 00 0 . 01 0 . 02 a ` = ( g ` − 2) / 2 Surpass DELPHI … or discover tension! Lydia Beresford � 40

  41. � Also sensitive to tau EDM How objects interact with an electric field EDM = Electric Dipole Moment τ = d × E torque electric dipole moment Possessed by e.g. water (polarised molecule) d = q x EDM tells us - about charge d x distribution + Lydia Beresford � 41

  42. Why are EDMs interesting? Further details Non-zero EDM � CP violation! → assuming CPT conserved d d Reverse time S S EDM tiny in SM, observation = New Physics! Lydia Beresford � 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend